Application of Fuzzy Logic For Feasibility Evaluation of Pasteurized Milk Consumption Based On Processing Temperature and pH

Authors

  • Nauval Artyasta IPB University Author
  • Wuliddah Tamsil Barokah IPB University Author
  • Annisa Raihanah Maimun IPB University Author
  • Mrr. Lukie Triniawati IPB University Author
  • Phasya Laila Safitri IPB University Author
  • Indah Puji Lestari IPB University Author
  • Fawziya Nusa Hrishita IPB University Author
  • Priskila Margaretha Sibagariang IPB University Author
  • Fila Adida Pranata IPB University Author
  • Fathan Ahmad Munawwar IPB University Author
  • Roma Juliana Arios IPB University Author

DOI:

https://doi.org/10.62535/fkxacz02

Keywords:

fuzzy logic, pasteurized milk, pH, temperature, consumption feasibility

Abstract

This study utilizes a fuzzy logic approach to analyze the consumption feasibility of pasteurized

milk, focusing on the interplay between temperature and pH as key quality indicators. Given

milk's perishable nature and the inherent imprecision of conventional monitoring methods, fuzzy

logic provides a more adaptive and realistic assessment system. The Mamdani fuzzy system

employed involves fuzzification, inference, and defuzzification to convert temperature and pH

data into a quantifiable crisp output. Results, validated by the Fuzzy Control Surface and Centroid

calculation (Sample 1: Temp 63, pH 5.4), demonstrate that the highest risk of damage occurs

when low temperature combines with acidic (low) pH, leading to an "Not Acceptable"

classification. Conversely, maintaining a neutral or high pH significantly mitigates the risk, even

under cold conditions. In conclusion, the fuzzy logic approach proves effective for automated

quality monitoring, accurately identifying high-risk conditions based on the simultaneous

relationship between temperature and pH.

References

Andhani YN, Sintiya ES, Amalia E L. 2025. Sistem pendukung keputusan pemilihan latihan

gym berbasis Fuzzy-AHP terintegrasi LLM. JIP (Jurnal Informatika Polinema). 11(4):503-512.

Astuti R, Rahardjo S. 2021. Pengaruh Suhu Penyimpanan terhadap Mutu Fisik dan Kimia

Susu Pasteurisasi. Jurnal Teknologi Hasil Pertanian. 14(2): 75–83.

Aydogdu, T., O’Mahony, J. A., & McCarthy, N. A. (2023). pH, the Fundamentals for Milk

and Dairy Processing: A Review. Dairy, 4(3), 395–410.

https://doi.org/10.3390/dairy4030026.

Bobyr MV, Milostnya NA, Kulabuhov SA. 2017. A method of defuzzification based on the

approach of areas' ratio. Sciencedirect journal. 59: 19-32.

Dongoran NP, Pane ACS, Wardani SA. 2024. Pemanfaatan MATLAB dalam analisis turunan

parsial : Visualisasi dan implementasi fungsi Multivariat. Jurnal Pengabdian

Masyarakat Sains dan Teknologi. 3(4): 92-97.

https://doi.org/10.58169/jpmsaintek.v3i4.638

Fariyanto, A. F. I., Putra, I. D. P., Pambudiarto, D., Setiawan, O. (2025). Evaluasi Efektifitas

Penghambatan Fermentasi pada Minuman Legen. Jurnal Integrasi Proses dan

Lingkungan, 2(1):102-108.

Irawan MD, Herviana. 2018. Implementasi logika Fuzzy dalam menentukan jurusan bagi

siswa baru sekolah menengah kejuruan (SMK) negeri 1 Air Putih. Jurnal Teknologi

Informasi.2(2): 129-137.

Lumbessy AS,Alfikri MR,Pato IU,Utami CR,RahimIA. 2025. Mikrobiologi Makanan

Modern. Padang: Azzia Karya Bersama.

Maulana AS, Utama ABP, Kasanah AN, Fauziah A, Murti DMP. 2024. Fuzzy Logic

Algorithm: Review and implementation. Jurnal Inovasi Teknologi dan Edukasi

Teknik. 4(9).

Mahomud, M. S., Haque, M. A., Akhter, N., & Asaduzzaman, M. (2021). Effect of milk pH at

heating on protein complex formation and ultimate gel properties of free-fat yoghurt.

Journal of Food Science and Technology, 58(5), 1969-1978.

https://doi.org/10.1007/s13197-020-04708-8.

Nisa, A. K., Abdy, M., Zaki, A. (2020). Penerapan fuzzy logic untuk menentukan

minuman susu kemasan terbaik dalam pengoptimalan gizi. Journal of

Mathematics Computations and Statistics. 3(1): 51.

Pujaru, K., Adakh, S., Kar, T. K., Patra, S., & Jana, S. (2024). A Mamdani fuzzy

inference system with trapezoidal membership functions for investigating

fishery production. Decision Analytics Journal, 11, 100481.

https://doi.org/10.1016/j.dajour.2024.100481.

Purba, T. D. L., Ramadya, A. L., Andani, E. W., Sinaga, B. F., & P, V. A. E. (2025).

Analisis Tingkat Pengangguran di Indonesia Menggunakan Sistem Inferensi Fuzzy. JOMLAI: Journal of Machine Learning and Artificial Intelligence,

(1), 53-60 https://doi.org/10.55123/jomlai.v4i1.5956.

Rabbani, A., Ayyash, M., D’Costa, C. D. C., Chen, G., Xu, Y., & Kamal-Eldin, A.

(2025). Effect of Heat Pasteurization and Sterilization on Milk Safety,

Composition, Sensory Properties, and Nutritional Quality. Foods, 14(8), 1342.

https://doi.org/10.3390/foods14081342.

Septiani W, Djatna T. 2015. Rancangan model performansi risiko rantai pasok agroindustri

susu dengan menggunakan pendekatan logika fuzzy. Agritech. 35(1): 88-97.

Sugiyono. 2013. Metode penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta.

Taufiqurrahman, D. R., & Pohan, M. A. R. (2023). Perbandingan performa logika fuzzy tipe-1

dan logika fuzzy tipe-2 pada sistem pasteurisasi susu berbasis mikrokontroler.

Telekontran, 2(1), 23-24. https://doi.org/10.34010/telekontran.v11i1.9686.

Triwidyastuti Y, Nizar M, Harianto H, Jusak J. 2019. Pengendali suhu pada proses

pasteurisasi susu dengan menggunakan metode PID dan metode fuzzy sugeno.

JTIIK (Jurnal Teknologi Informasi Dan Ilmu Komputer). 6(4):355-362.

Wulandari, Z., Taufik E., Syarif, M. (2017). Kajian Kualitas Produk Susu Pasteurisasi

Hasil Penerapan Pendingin. Jurnal Ilmu Produksi dan Teknologi Hasil

Peternakan, 5(3): 94-100.

Zendrato NE., & Sembiring, P. (2014). Perencanaan jumlah produksi mie instan dengan

penegasan (defuzzifikasi) centroid fuzzy mamdani (studi kasus: jumlah produksi

indomie di PT. Indofood CBP Sukses Makmur, Tbk Tanjung Morawa).

Downloads

Published

2026-01-24

How to Cite

Application of Fuzzy Logic For Feasibility Evaluation of Pasteurized Milk Consumption Based On Processing Temperature and pH. (2026). Journal of Applied Science, Technology & Humanities, 3(1), 808-821. https://doi.org/10.62535/fkxacz02