Application of Fuzzy Logic For Feasibility Evaluation of Pasteurized Milk Consumption Based On Processing Temperature and pH
DOI:
https://doi.org/10.62535/fkxacz02Keywords:
fuzzy logic, pasteurized milk, pH, temperature, consumption feasibilityAbstract
This study utilizes a fuzzy logic approach to analyze the consumption feasibility of pasteurized
milk, focusing on the interplay between temperature and pH as key quality indicators. Given
milk's perishable nature and the inherent imprecision of conventional monitoring methods, fuzzy
logic provides a more adaptive and realistic assessment system. The Mamdani fuzzy system
employed involves fuzzification, inference, and defuzzification to convert temperature and pH
data into a quantifiable crisp output. Results, validated by the Fuzzy Control Surface and Centroid
calculation (Sample 1: Temp 63, pH 5.4), demonstrate that the highest risk of damage occurs
when low temperature combines with acidic (low) pH, leading to an "Not Acceptable"
classification. Conversely, maintaining a neutral or high pH significantly mitigates the risk, even
under cold conditions. In conclusion, the fuzzy logic approach proves effective for automated
quality monitoring, accurately identifying high-risk conditions based on the simultaneous
relationship between temperature and pH.
References
Andhani YN, Sintiya ES, Amalia E L. 2025. Sistem pendukung keputusan pemilihan latihan
gym berbasis Fuzzy-AHP terintegrasi LLM. JIP (Jurnal Informatika Polinema). 11(4):503-512.
Astuti R, Rahardjo S. 2021. Pengaruh Suhu Penyimpanan terhadap Mutu Fisik dan Kimia
Susu Pasteurisasi. Jurnal Teknologi Hasil Pertanian. 14(2): 75–83.
Aydogdu, T., O’Mahony, J. A., & McCarthy, N. A. (2023). pH, the Fundamentals for Milk
and Dairy Processing: A Review. Dairy, 4(3), 395–410.
https://doi.org/10.3390/dairy4030026.
Bobyr MV, Milostnya NA, Kulabuhov SA. 2017. A method of defuzzification based on the
approach of areas' ratio. Sciencedirect journal. 59: 19-32.
Dongoran NP, Pane ACS, Wardani SA. 2024. Pemanfaatan MATLAB dalam analisis turunan
parsial : Visualisasi dan implementasi fungsi Multivariat. Jurnal Pengabdian
Masyarakat Sains dan Teknologi. 3(4): 92-97.
https://doi.org/10.58169/jpmsaintek.v3i4.638
Fariyanto, A. F. I., Putra, I. D. P., Pambudiarto, D., Setiawan, O. (2025). Evaluasi Efektifitas
Penghambatan Fermentasi pada Minuman Legen. Jurnal Integrasi Proses dan
Lingkungan, 2(1):102-108.
Irawan MD, Herviana. 2018. Implementasi logika Fuzzy dalam menentukan jurusan bagi
siswa baru sekolah menengah kejuruan (SMK) negeri 1 Air Putih. Jurnal Teknologi
Informasi.2(2): 129-137.
Lumbessy AS,Alfikri MR,Pato IU,Utami CR,RahimIA. 2025. Mikrobiologi Makanan
Modern. Padang: Azzia Karya Bersama.
Maulana AS, Utama ABP, Kasanah AN, Fauziah A, Murti DMP. 2024. Fuzzy Logic
Algorithm: Review and implementation. Jurnal Inovasi Teknologi dan Edukasi
Teknik. 4(9).
Mahomud, M. S., Haque, M. A., Akhter, N., & Asaduzzaman, M. (2021). Effect of milk pH at
heating on protein complex formation and ultimate gel properties of free-fat yoghurt.
Journal of Food Science and Technology, 58(5), 1969-1978.
https://doi.org/10.1007/s13197-020-04708-8.
Nisa, A. K., Abdy, M., Zaki, A. (2020). Penerapan fuzzy logic untuk menentukan
minuman susu kemasan terbaik dalam pengoptimalan gizi. Journal of
Mathematics Computations and Statistics. 3(1): 51.
Pujaru, K., Adakh, S., Kar, T. K., Patra, S., & Jana, S. (2024). A Mamdani fuzzy
inference system with trapezoidal membership functions for investigating
fishery production. Decision Analytics Journal, 11, 100481.
https://doi.org/10.1016/j.dajour.2024.100481.
Purba, T. D. L., Ramadya, A. L., Andani, E. W., Sinaga, B. F., & P, V. A. E. (2025).
Analisis Tingkat Pengangguran di Indonesia Menggunakan Sistem Inferensi Fuzzy. JOMLAI: Journal of Machine Learning and Artificial Intelligence,
(1), 53-60 https://doi.org/10.55123/jomlai.v4i1.5956.
Rabbani, A., Ayyash, M., D’Costa, C. D. C., Chen, G., Xu, Y., & Kamal-Eldin, A.
(2025). Effect of Heat Pasteurization and Sterilization on Milk Safety,
Composition, Sensory Properties, and Nutritional Quality. Foods, 14(8), 1342.
https://doi.org/10.3390/foods14081342.
Septiani W, Djatna T. 2015. Rancangan model performansi risiko rantai pasok agroindustri
susu dengan menggunakan pendekatan logika fuzzy. Agritech. 35(1): 88-97.
Sugiyono. 2013. Metode penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta.
Taufiqurrahman, D. R., & Pohan, M. A. R. (2023). Perbandingan performa logika fuzzy tipe-1
dan logika fuzzy tipe-2 pada sistem pasteurisasi susu berbasis mikrokontroler.
Telekontran, 2(1), 23-24. https://doi.org/10.34010/telekontran.v11i1.9686.
Triwidyastuti Y, Nizar M, Harianto H, Jusak J. 2019. Pengendali suhu pada proses
pasteurisasi susu dengan menggunakan metode PID dan metode fuzzy sugeno.
JTIIK (Jurnal Teknologi Informasi Dan Ilmu Komputer). 6(4):355-362.
Wulandari, Z., Taufik E., Syarif, M. (2017). Kajian Kualitas Produk Susu Pasteurisasi
Hasil Penerapan Pendingin. Jurnal Ilmu Produksi dan Teknologi Hasil
Peternakan, 5(3): 94-100.
Zendrato NE., & Sembiring, P. (2014). Perencanaan jumlah produksi mie instan dengan
penegasan (defuzzifikasi) centroid fuzzy mamdani (studi kasus: jumlah produksi
indomie di PT. Indofood CBP Sukses Makmur, Tbk Tanjung Morawa).




