Evaluation of Cassava Chip Crispness Using a Fuzzy Logic System Based on Temperature and Vacuum Pressure Variables
DOI:
https://doi.org/10.62535/cz87d281Keywords:
cassava chips, crispness evaluation, fuzzy logic, food productionAbstract
The study evaluates cassava chip crispness using a fuzzy logic system based on temperature and vacuum pressure variables. Fuzzy logic system is applied to objectively assess crispness, modeling the relationship between frying variables and chip texture. The application of fuzzy systems as a quality control tool can help optimize the production process so that chips meet standards. This study employs a literature review combined with an expert-based approach to design a fuzzy logic system for evaluating the crispiness of cassava chips based on temperature and pressure variables. For input and output variables, we use temperature and vacuum pressure. The temperature range used is 140-200°C and for pressure variable, we use -65, -68, -72 CmHg. Sensory values for the three crispness categories show that the undercooked category received an average score of 3.76 ± 0.52, the crisp (optimal) category received 3.72 ± 0.88, and the overcooked category received 3.85 ± 0.11. Combination of temperature 170°C and vacuum pressure -68.5 CmHg yields the best crispness result, showing that the chips reach the desired texture, not too hard and not too soft. This demonstrates that the centroid method provides a representative defuzzified value that closely reflects actual frying conditions, ensuring consistent product quality.
References
Agusman. (2013). Pengujian Organoleptik. (Skripsi, Universitas Muhammadiyah Semarang)
Asmara, S., Oktafri., Kuncoro, S., Sari, S.Y. (2024).The Effect of Temperature and Pressure on The Results of Frying Banana Muli (Musa acuminata) Chips Semprong Model Using Vacuum Frying. Jurnal Agricultural Biosystem Engineering, 3(2), 172-182. http://dx.doi.org/10.23960/jabe.v3i2.9085
Asriandi R., Meilanie, Amelia, M., Husran, Y., Yuliana, H., Deka, C.R., Mauwaddah, S., Fantashir. (2024). Mengeksplorasi Potensi Pengembangan Usaha Keripik Olahan Di Desa Ketangguhan, Kecamatan Suro Makmur, Kabupaten Aceh Singkil. AMPOEN Journal, 2(2), 747-758. https://doi.org/10.32672/ampoen.v2i2.2319
Avi M.A., Hindarto., Eviyanti, A. (2022). Optimization of Onion Cracker Production Using Fuzzy Mamdani Logic. Journal of Information and Computer Technology Education, 6(2), 72-78. https://doi.org/10.21070/jicte.v6i2.1642
Bobyr, Maxim Milostnaya, N Kulabuhov, Sergey (2017). A Method of Defuzzification Based on the Approach of Areas' Ratio. Journal Applied Soft Computing, 59. https://doi.org/ 10.1016/j.asoc.2017.05.040
Chen Y, Wang Y, Guan Q, dan Zhou X. (2024). Effect of Frying Temperatures and Times on the Quality and Flavors of Three Varieties of Lentinus edodes. Foods, 14(1), 24. https://doi.org/10.3390/foods14010024
Correa, D.A., Morales, J.J., Castillo, P.M.M. (2021). The Effect of Edible Coatings on Selected Physicochemical Properties of Cassava Chips. Applied Science, 11(7), 1-12. https://doi.org/10.3390/app11073265
Damayanti R., Dhandy, R., Wulandari, S.A, Brillyantina, S. (2025). Pengendalian Kualitas Produksi Keripik Ubi Ungu Dengan Metode Statistical Process Control Di UMKM Ganesa Mojokerto. BROMO: Business Research and Management Journal, 2(3), 48-63.
Dangal A, Tahergorabi R, Acharya DR, Timsina P, Rai K, Dahal S, Acharya P, Giuffre AM. (2024). Review on Deep-Fat Fried Foods : Physical and Chemical Attributes, and Consequences of High Consumption. European Food Research and Technology, 250(3), 1537-1550. https://doi.org/10.1007/s0017-024-04482-3
Gilda, K.S., Satarkar, S.L. (2020). Analytical Overview of Defuzzification Methods. International Journal of Advance Research, Ideas and Innovations in Technology, 6(2), 359-365.
Gusti A.P., et.al. (2025). Implementation of Fuzzy Logic in Management Decision Making Supply of Raw Materials for Pie Production in the Food Industry. Journal of Applied Science, Technology & Humanities, 2(4), 491-503. https://doi.org/10.62535/xnxxdt92
Hanafi, A., Siregar, S. (2025). Analisis Pendapatan dan Kelayakan Home Industri Keripik Singkong Selasih di Desa Sentang Kecamatan Kisaran Timur Kabupaten Asahan. Jurnal Agroplasma, 12(1), 304-315.
Hidayati N, Najihah N, Hanim N. (2021). Comparison of Conventional Frying and Microwave Frying of Beef Patty : Effect on Oil absorption, texture, physical and chemical properties. Journal of Food Research, 5(3), 399-405. https://doi.org/10.26656/fr.2017.5(3).640
Hoffman, P. (2016). Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data. Remote Sensing, 8, 1-23. https://doi.org/10.3390/rs8060467
Jamaluddin, Suardy, Siswantor, Laga, S. (2011). The Influence of Temperature and Vacuum Pressure on Water Vaporization, Volume Changes and Density Ratio of Fruit Chips During Vacuum Frying. Jurnal Teknologi Pertanian, 12(2), 100-108.
Kusumadewi, S. Hari, P. (2004). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.
Mahardika, F, Sumantri, R.B.B. (2022). Penerapan Metode Fuzzy Logic pada Sistem Pengaturan Kecepatan Mesin Produksi. Blend Sains Jurnal Teknik, 1(3), 186-193. https://doi.org/10.56211/blendsains.vl13.158
Maulana, A.S.K., Wahyudi, K., Fahri, M., Hasan, M.S., Hasan, M.Z., Zainudin, Rizal, A. (2025). Analisis Strategi Usaha Keripik Singkong Dalam Menghadapi Persaingan UMKM Di Desa Kotaanyar. Menulis: Jurnal Penelitian Nusantara, 1(7), 234-242. https://doi.org/10.59435/menulis.v1i7.529
Osofisan, P.B., Falodun M.O. (2007). Fuzzy Logic Control of Food Frying Process: An Optimization of Travelling Speed of the Conveyor Belts. The Pacific Journal of Science and Technology, 8(2), 286-294.
Pavani, M., Singha, P., Rajamanickam, D.T,, Singh, S.K. (2023). Application of Fuzzy Logic Techniques for Sensory Evaluation of Plant-Based Extrudates Fortified with Bioactive Compounds. Explor Foods Foodomics, 1, 272–87. https://doi.org/10.37349/eff.2023.00021
Putri, S. A, Istiqomah, H., Wirasto, A. (2024). Pemanfaatan Logika Fuzzy dalam Sektor Pertanian: Sebuah Kajian Literatur. Jurnal Kolaborasi Riset Sarjana, 1(1), 74-93.
Ridwan, A. (2024). Oven Listrik Keripik Buah Berbasis Arduino dengan Menggunakan Metode Fuzzy Logic dan Sensor DHT22. The Indonesian Journal of Computer Science (IJCS), 13(5), 8291-8305. https://doi.org/10.33022/ijcs.v13i5.4382
Saputra, W. (2022). Pengaruh Suhu dan Tekanan Penggorengan dengan Vacuum Frying pada Pembuatan Keripik Singkong Tebal (Skripsi, Universitas Lampung)
Sari I.S., Murdani D. (2024). Analisis Pengendalian Kualitas Produksi Olahan Studi Kasus Produsen Keripik Singkong Darih di Desa Rende. Jurnal Inovasi dan Akuntansi Berkelanjutan, 5(4), 23-28.
Sergovia G, R Urbano, S Fiszman, J, Martinez-monzo. (2015). Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology, 69, 515-521. https://dx.doi.org/10.1016/j.lwt.2016.02.014
Siwoyo, B., Zaenal, A. (2018). Model Peramalan Fuzzy Logic. JAMIKA, 8(1), 1-14. https://doi.org/10.34010/jamika.v8i1.897
Tumbel, N., Manurung, S. (2017). Pengaruh Suhu dan waktu Penggorengan Terhadap Mutu Keripik Nanas Menggunakan Penggoreng Vakum. Jurnal Penelitian Teknologi Industri, 9(1), 9-22.
Tunick, M.H., Onwulata, C.I., Thomas, A.E., Phillips, J.G., Mukhopadhyay, S., Shen, S., Liu, C.K., Latona, N., Pimentel, M.R., dan Cooke, P.H. (2013). Critical Evaluation of Crispy and Crunchy Textures : A Review. International Journal of Food Properties. 16, 949-963. https://10.1080/10942912.2011.573116
Wahyuni, P.R., Rahman A.S., Hopid. (2024). Pengaruh Kualitas Produk Dan Kualitas Pelayanan Terhadap Loyalitas Pelanggan Keripik Singkong Cap Lumba-Lumba Rasa Pedas Manis. Jurnal Hudan Lin Naas, 5(1), 89-86.
Yudha FA, Putra RA. (2024). Implementation of Sugeno fuzzy logic methods for predicting pie crust raw material stock. Journal TECH-E, 8(1), 61-74. https://doi.org/10.31253/te.v8i1.3193




