Fuzzy Logic Approach to Determine Apple Maturity for Harvesting Decision

Authors

  • Muhammad Rafi Andika Wijaya IPB University Author
  • Wuliddah Tamsil Barokah IPB University Author
  • Annisa Raihanah Maimun IPB University Author
  • Mrr Lukie Trianawati IPB University Author
  • Syadza Afifah Nuri IPB University Author
  • Senja Surya Gama IPB University Author
  • Putri Nurbaiti IPB University Author
  • Nisrina Fatin Nadra IPB University Author
  • Fional Alvina Nirmala Putri IPB University Author
  • Ayu Nur Fadhila IPB University Author
  • Anindya Salsabila Hamdani Putri IPB University Author
  • Roma Juliana Arios IPB University Author

DOI:

https://doi.org/10.62535/2awk4n51

Keywords:

apple maturity, fuzzy logic, MATLAB, fruit quality, decision-making

Abstract

This study aims to develop a fuzzy logic–based system for determining the maturity level of Anna apples as a basis for harvest decision-making. Five key parameters were used as input variables: Flesh Firmness (FF), Soluble Solid Content (SSC), Starch Pattern Index (SPI), Total Acidity (TA), and Hue°, with one output variable representing the maturity level (unripe, ripe, and overripe). The research employed a literature review method with a qualitative descriptive approach by collecting data from scientific journals and relevant documents discussing apple maturity and the application of fuzzy logic in agriculture. Data analysis was conducted using MATLAB through processes including fuzzification, formulation of If–Then rules, Mamdani inference, and defuzzification to produce a crisp output value representing apple maturity. The results indicate that the fuzzy logic system effectively models apple maturity parameters and provides accurate, objective, and efficient decisions compared to conventional subjective methods. The application of fuzzy logic offers a non-destructive classification method that assists farmers in determining the optimal harvest time, improving post-harvest quality, and maintaining product consistency.

References

Agusta W. (2016). Deteksi Kematangan Buah Melon Golden Apollo Menggunakan Parameter Sinyal Suara [skripsi]. Bogor: IPB University

Alfajri, R. (2025). Sistem sortir apel malang berbasis IoT menggunakan metode Fuzzy Sugeno. [skripsi] Malang: Universitas Islam Negeri Maulana Malik Ibrahim.

Anggara, D. S. T., Suryanto, & A, Ainurrasjid. (2017). Kendala produksi apel (Malus sylvestris Mill) var. manalagi di desa Poncokusumo, Kabupaten Malang. Jurnal Produksi Tanaman. 5(2). 2527-8452.

Arinal, V, & Ramadhan, M. A. (2025). Identify the maturity of apples using fuzzy logic mamdani. Jurnal Pendidikan Tambusai. [ 2025 Nov 11]. 9(2): 15170-15175. doi: https://jurnal.seaninstitute.or.id/index.php/juti/article/view/545.

Arnal, A., Volmerange, L., Brustel, J., Verdier, C., Gerbaud, S., Pages, M., & Levasseur-garcia, C. (2024). Rapid , Non-Destructive Prediction of Ripeness of Pink Lady Apples by Using Near-Infrared Spectroscopic Methods to Monitor Firmness , Sugar Content , Juiciness and Acidity.

Bawindaputri, T. A., Astuti, R., & Lestari, E. R. (2022). Analisis keberlanjutan rantai pasok apel di kabupaten malang menggunakan dinamika sistem. Jurnal Teknologi Industri Pertanian. 32 (2): 121-136. doi: https://doi.org/10.24961/j.tek.ind.pert.2022.32.2.12.

Biegert, K., Stöckeler, D., McCormick, R.J., Braun, P. Modelling Soluble Solids Content Accumulation in ‘Braeburn’ Apples. (2021). Plants. 10:302. doi: https://doi.org/10.3390/plants 10020302

Balitjestro. 2018. Perkembangan Apel Di Poncokusumo. Malang: Badan Penelitian Tanaman Jeruk dan Buah Subtropika.

Ciputra, A., Setiadi, D. R. I. M., Rachawanto, E. H., & Susanto, A. (2018). Klasifikasi Tingkat Kematangan Buah APel Manalagi Dengan Algoritma Naive Bayes dan Ekstraksi Fitur Citra Digital. Jurnal SIMETRIS. 9(1):465–472.

Doer, F. C., Miller, W. B., Nock, J. F., & Watkins, C. B. (2015). Postharvest Biology and Technology Relationships between starch pattern indices and starch concentrations in four apple cultivars. 110:86–95. doi:10.1016/j.postharvbio.2015.07.012.

Fadillah, R., & Aji, S.T. (2024). Analisis faktor yang mempengaruhi faktor yang mempengaruhi turunnya harga jual apel di desa Andonosari Tutur Nongkojajar Kabupaten Pasuruan. Jurnal Ilmiah Sains dan Teknologi. 2(12). 520-530.

Grabska, J., Bec, K. B., Ueno, N., & Huck, C. W. (2023). Analyzing the Quality Parameters of Apples by Spectroscopy from Vis?NIR Region: A Comprehensive Review. Foods. 12. doi: https://doi.org/10.3390/foods12101946

Gusti, A.P., Afivah, A.R.C.D, Rahmah, D.A., Denasfi, M.N., Putri, N.A.C., Hanifah, R., Restiani, T., Trianawati, M.R., Zulqisthi, D., Assariy, M.F., (et all). (2025). Implementation of Fuzzy Logic in Management Decision Making Supply of Raw Materials for Pie Production in the Food Industry. Journal of Applied Science, Technology & Humanities. 2(4):491-508. doi: https://doi.org/10.62535/xnxxdr92

Hamdi, N., Khoiriyah, N., & Sudjoni, M. N. (2022). Efisiensi Agroindustri Keripik Apel di Kota Batu. Jurnal Sosial Ekonomi Pertanian dan Agribisnis. 10(2):1-6.

Hartanto, S. (2017). Implementasi Fuzzy Rule Based System Untuk Klasifikasi Buah Mangga. Jurnal Teknik Informatika. 9(2):103-117. doi: https://doi.org/10.29103/techsi.v9i2.217.

Ikhsan M. K., (2024). Pengaruh Pelapis Sodium Alginat dan Kalsium Kloroda Terhadap Kualitas Apel (Malus sylvestris Mill.) Potong Segar [skripsi]. Malang: Universitas Islam Negeri Maulana Malik Ibrahim.

Iwanami, H., Moriya-tanaka, Y., Hapnada, T., Baba, T., & Sakamoto, D. (2024). Factors Explaining Variations in Soluble Solids Content of Apples during Ripening and Storage. https://doi.org/10.2503/hortj.QH-105

Ján, B. M., & Davide, S. (2014). Selected Quantitative Parameters Comparison of Apples from Bio- and Conventional Production. 5(4):343–354.

Jistechok, A. Wrona, D., & Krupa, T. (2023). Effect of Storage on the Storability and Nutritional Value of New Polish Apples Grown in Central Poland. Agriculture. 14. doi: https://doi.org/10.3390/agriculture14010059

Khairuddin, S.H., Hasan, M.H., Hashmani, M.A., Azam, M.H. (2021). Generating Clustering-Based Interval Fuzzy Type-2 Triangular and Trapezoidal Membership Functions: A Structured Literature Review. Symmetry. 13: 239. doi: https://doi.org/10.3390/sym13020239

Lau, J. T. H., Tho, S. W., & Radzwan, A. (2022). The development and Usability of a Force and Motion Digital Game using Game-based learning (GBL) among Student Teachers in Malaysia. In Journal of Physics: Conference Series (Vol. 2309, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1742-6596/2309/1/012049

Maya Cholidah. (2017). Pemutu apel manalagi (Malus sylvestris Mill) menggunakan citra digital dengan variasi umur simpan. [skripsi] Jember: Universitas Jember.

Míšková, Z., Lorencová, E. Salek, R.N., Koláˇcková, T., Trávníková, L., Rejdlová, A., Bu ˇnková, L., Buˇnka, F. (2023). Occurrence of Biogenic Amines in Wines from the Central European Region (Zone B) and Evaluation of Their Safety. Foods. 12: 1835. https://doi.org/10.3390/foods12091835

Nurani, F. P. (2020). Penambahan Pektin, Gula, dan Asam Sitrat Dalam Pembuatan Selai dan Marmalade Buah-Buahan. Journal of Food Technology and Agroindustry. 2(1):27–32.

Pah, N. E. R., Mola, S. A. S., & Mauko, A. Y. (2021). Extraction of HVS Color and Shape Characteristics of Moment Invariant for Classification of Red Apples. Jurnal Komputer dan Informatika. 9(2):142–153.

Ramadhan, A. Sumadiwangsa, A. M., & Gevani, M. (2024). Rancang Bangun Robot Pemilah Kematangan Buah Apel Berdasarkan Perbedaan Warna Menggunakan Mikrokontroler Arduino dan Sensor TCS3200 Amri Ramadhan. Jurnal Teknik Mesin, Industri, Elektro, dan Informatika. 3(2):201-208.

Ramdani, E. (2015). Fuzzy Logic Modeling untuk Pengambilan Keputusan Menggunakan MATLAB. 4(2):30-33.

Rosidah L. I. (2020). Pengembangan Sensor Untuk Penentuan Kesegaran Buah Apel Berbasis Indikator Methyl Orange dan Bromophenol Blue [skripsi]. Jember: Universitas Jember.

Rizky D. (2022). Pendugaan karakteristik fisiko-kimia buah apel menggunakan spektroskopi Near Infrared. [skripsi]. Bogor: Institut Pertanian Bogor.

Sabzi, S., Nadimi, M., Abbaspour-Gilandeh, Y., & Paliwal, J. (2022). Non-Destructive Estimation of Physicochemical Properties and Detection of Ripeness Level of Apples Using Machine Vision. International Journal of Fruit Science, 22(1), 628–645. https://doi.org/10.1080/15538362.2022.2092580

Simanjuntak, J. F., Sari, A. P., & Syahputri, A. N. (2020). Implementasi Fuzyy Tsukamoto Dalam Menentukan Harga Gabah Pada Petani. Jurnal Penerapan Kecerdasan Buatan. 1(2):121–125.

Su, Q., Li, X., Wang, L., Wang, B., Feng, Y., Yang, H.; Zhao, Z. (2022). Variation in Cell Wall Metabolism and Flesh Firmness of Four Apple Cultivars during Fruit Development. Foods. 11:3518. doi: https://doi.org/10.3390/foods11213518.

Teng, S., & Alonzo, D. (2023). Critical Review of the Australian Professional Standards for Teachers: Where are the non-Cognitive Skills?. International Journal of Instruction, 16(1). 605-624. https://doi.org/10.29333/iji.2023.16134a

Wahyuni, A., Marianah, & Aswan, D.A. (2024) Penghambatan proses browning enzimatis pada buah apel sebagai model praktikum biologi. Jurnal Biologica Samudra 6(1): 50-56. https://doi.org/10.33059/jbs.v2i1.10708

Downloads

Published

2026-01-24

How to Cite

Fuzzy Logic Approach to Determine Apple Maturity for Harvesting Decision. (2026). Journal of Applied Science, Technology & Humanities, 3(1), 822-838. https://doi.org/10.62535/2awk4n51