Evaluating the Quality Grade of Cookies through Crispness and Baking Temperature Analysis Using a Fuzzy Inference System
DOI:
https://doi.org/10.62535/p44bqb37Keywords:
cookies, fuzzy logic, crispAbstract
Cookies are one of the most popular processed food products due to their distinctive taste, long shelf life, and variety of textures ranging from soft to crisp. Physical properties such as crispiness play an important role in determining consumer preferences and acceptance. These characteristics are influenced by several factors, one of which is the baking temperature that determines the quality of soft cookies. Advances in computing technology have enabled objective food quality analysis through artificial intelligence approaches. This study aims to evaluate the suitability of cookies based on crispiness and baking temperature parameters using the Fuzzy Inference System (FIS) method. The research was conducted using a fuzzy system designed with input variables of temperature and crispiness, and output variables of product quality categorized as poor, moderate, and good. Each variable was represented in the form of a triangular membership function. The results showed that fuzzy logic was able to effectively integrate parameters, making it a smart and objective quality assessment method.
References
REFERENCES
Anggraeni, A., Handayani, T., & Palupi, S. (2018). Pengaruh Hidrokoloid Pada Karakteristik Sensoris Kue Kering Non-Gandum. HEJ (Home Economics Journal), 1(1), 1–8.
Anjani, F. A., & Marpaung, F. (2022). Perbandingan Metode Fuzzy Tsukamoto, Mamdani Dan Sugeno Dalam Penentuan Jumlah Pemasukan Beras Optimum Pada Perum Bulog Divisi Regional Sumatera Utara. Karismatika: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika Dan Aplikasi, 8(1). https:///doi.org/10.24114/jmk.v8i1.340
Faturahman MR, Nurohmah SD, Kinandhana BA. (2024). Optimalisasi Produksi Roti Coklat d i Loren ' s Bakery dengan Pendekatan Peramalan dan Fuzzy Logic Sugeno. 4:2298–2310.
Haerani, E. (2014). Analisa kendali logika fuzzy dengan metode defuzzifikasi coa (center of area), bisektor, mom (mean of maximum), lom (largest of maximum), dan som (smallest of maximum). SITEKIN: Jurnal Sains, Teknologi dan Industri, 10(2), 245-253.
Lasaji, H., Assa, J., & Taroreh, M. (2023). Kandungan Protein, Kekerasan Dan Daya Terima Cookies Tepung Komposit Sagu Baruk (Arenga microcarpa) Dan Kacang Hijau (Vigna radiata). Jurnal Teknologi Pertanian, 14, 1–15.
Lima, J. F., Patiño-León, A., Orellana, M., & Zambrano-Martinez, J. L. (2025). Evaluating the Impact of Membership Functions and Defuzzification Methods in a Fuzzy System: Case of Air Quality Levels. Applied Sciences, 15(4), 1934. doi:10.3390/app15041934.
Panghal, A., Chhikara, N., & Khatkar, B. S. (2018). Effect of Processing Parameters and Principal Ingredients on Quality of Sugar Snap Cookies: A Response Surface Approach. Journal of food science and technology, 55(8), 3127-3134. https://doi.org/10.1007/s13197-018-3240-9
Pavani M, Singha P, Rajamanickam DT, Singh SK. (2023). Exploration of Foods and Foodomics Application of Fuzzy Logic Techniques for Sensory Evaluation of Plant-based Extrudates Fortified With Bioactive Compounds.
Quality F, Supervisor A, Supervisor QA, Technology E. (2024). Implementation of Fuzzy Logic in the Oven Temperature Control System and The Length of Time in The Baking Process for Nastar Products. 1(4):342–355.
Saatchi, R. (2024). Fuzzy Logic Concepts, Developments and Implementation. Information, 15(10). https://doi.org/10.3390/info15100656
Sari, E. R. (2012). Persamaan Fuzzy (Skripsi, Universitas Islam Negeri Maulana Malik Ibrahim).
Setia, B., Ramadan, A. (2019). Penerapan Logika Fuzzy pada Sistem Cerdas. Jurnal Sistem Cerdas, 2(1), 61-66. https://doi.org/10.37396/jsc.v2i1.18
Singh, V., Kumar, S., Rai, A. (2025). Rating of Various Mahua (madhuca longifolia) Cookies and Their Characteristics by Sensory Evaluation Using Fuzzy Logic. International Journal on Nutraceuticals, Functional Foods and Novel Foods, 1, 617-628. https://doi.org/10.17470/NF-025-0070
Sitinjak, B. R., Panjaitan, B. A., Ram, A., & Andani, S. R. (2024). Penerapan Metode Fuzzy Sugeno Dalam Penentuan Jumlah Produksi Minyak Goreng (Studi Kasus : Minyak Goreng Fortune). 2(2).
Tampubolon, A., Situmorang, A., & Ridwan, A. (2024). Oven Listrik Keripik Buah Berbasis Arduino dengan Menggunakan Metode Fuzzy Logic dan Sensor DHT22. The Indonesian Journal of Computer Science, 13(5), 1–15. https://doi.org/10.33022/ijcs.v13i5.4382
Yunan A, Ali M. (2020). Study and Implementation of the Fuzzy Mamdani and Sugeno Methods in Decision Making on Selection of Outstanding Students at the South Aceh Polytechnic. Jurnal Inotera, 5(2), 152-164. https://doi.org/10.31572/inotera.vol5.Iss2.2020.ID127
Scientific Journal Articles
Arifuddin, A., Wahyudin, W., Prabawanto, S., Yasin, M., & Elizanti, D. (2022). The Effectiveness of Augmented Reality-Assisted Scientific Approach to Improve Mathematical Creative Thinking Ability of Elementary School Students. Al Ibtida: Jurnal Pendidikan Guru MI, 9(2), 444-455. http://dx.doi.org/10.24235/al.ibtida.snj.v9i2.11647
Teng, S., & Alonzo, D. (2023). Critical Review of the Australian Professional Standards for Teachers: Where are the non-Cognitive Skills?. International Journal of Instruction, 16(1). 605-624. https://doi.org/10.29333/iji.2023.16134a
Book
Valanides, N. (2014). Technological Pedagogical Content Knowledge. New York: Springer
Proceedings of the Seminar / Conference
Lau, J. T. H., Tho, S. W., & Radzwan, A. (2022, July). The Development and Usability of a Force and Motion Digital Game using Game-based learning (GBL) among Student Teachers in Malaysia. In Journal of Physics: Conference Series (Vol. 2309, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1742-6596/2309/1/012049
Thesis/Dissertation
Latif, M. A. (2018). Analisis Tingkat Literasi Teknologi Informasi dan Komunikasi Guru Sekolah Dasar di Kabupaten Garut (Doctoral dissertation, Universitas Pendidikan Indonesia).




