Analysis of the Effect of Protein Content and Preheating Temperature on the Hardness of SPC Biscuits Using the Fuzzy Logic Method

Authors

  • Muhammad Alpiansyah IPB University Author
  • Wuliddah Tamsil Barokah IPB University Author
  • Annisa Raihanah Maimun IPB University Author
  • Mrr Lukie Trianawati IPB University Author
  • Syifa Fauziyah IPB University Author
  • Nida Qotrunnada IPB University Author
  • Naura Alissa Davellitha IPB University Author
  • Meylani Awaliyah IPB University Author
  • Izza Afkarina Umar IPB University Author
  • Davina Baiza Radityaputri IPB University Author
  • Akmal Kayru Raid IPB University Author
  • Rome Juliana Arians IPB University Author

DOI:

https://doi.org/10.62535/6h6fq558

Keywords:

Fuzzy Logic, SPC Biscuits, Hardness, Protein Content, Preheating Temperature.

Abstract

This study aimed to analyze and model the non-linear effect of protein content and preheating temperature on the hardness of Soy Protein Concentrate (SPC)-based biscuits using the Sugeno fuzzy logic method. A descriptive quantitative approach was employed, utilizing the Sugeno-type Fuzzy Inference System (FIS) designed and implemented using MATLAB software. The inputs were protein concentration (7-16%) and preheating temperature (70-90°C), with biscuit hardness (747.5-2176.5 gf) as the output. The system successfully mapped the complex interactions through nine fuzzy if-then rules. The results showed that increasing protein content generally increases hardness, particularly at higher preheating temperatures. However, excessive heating at medium protein content led to a decrease in hardness due to structural degradation. The defuzzification surface indicated that the preheating temperature has a relatively stronger influence on the final hardness than protein content. The developed fuzzy model provides accurate and interpretable predictions (e.g., 11.5% protein and 80°C yields a medium hardness of 1.45 x 10³ gf), proving its effectiveness as an adaptive decision-support tool for optimizing high-protein biscuit production.

References

Agrahar-Murugkar, D., Gulati, P., & Gupta, C. (2020). Fuzzy logic analysis of sensory attributes of snack bars prepared from multi-nutrient composite flour and natural binding agents. Journal of Agricultural Engineering (India), 57(1), 25-39. https://doi.org/10.52151/jae2020571.1701.

Cahyani, D. S. M., Ikhsan, M. 2024. Implementation of sugeno fuzzy logic method as an automatic humidity moisture control system in terrarium. International Journal of Recent Technology and Applied Science, 6(2),101-113.https://doi.org/10.36079/lamintang.ijortas-0602.711.

Dai, Y. (2024). Improving dough process quality and biscuit nutritional value. Journal of Food Process Engineering, 47(8), e14235. https://doi.org/10.1016/S2212-4292(24)01835-2

El-Gohery, S. S. (2021). Effect of different treatments on nutritional value of lima bean (Phaseolus lunatus) and its utilization in biscuit manufacture. Food and Nutrition Sciences, 12(4), 372-391. https://doi.org/10.4236/fns.2021.124029.

Fatkhurrozi, B., & Setiawan, A. H. (2024). Implementasi logika fuzzy pada sistem kendali suhu dan kelembaban udara untuk ruangan pengering biji kopi berbasis mikrokontroller. JTECE, 6(1), 50–59. https://doi.org/10.20895/jtece.v6i1.1319

Fauzan, A. N., Abdillah, M., Aththar, R. F., Septiarini, A., & Wati, M. (2025). Implementasi logika fuzzy mamdani dalam sistem penilaian kesehatan makanan kemasan berdasarkan label nutrition facts. Jurnal Methodika, 11(2), 2442–7861. https://doi.org/10.46880/mtk.v11i2.4334

Garg, H., Ali, Z., Perez-Dominguez, L., & Hezam, I. H. (2025). Multi-attributive border approximation area comparison model based on Sugeno–Weber power fuzzy linguistic variables with Z-number information. Alexandria Engineering Journal, 130, 995–1011. https://doi.org/10.1016/j.aej.2025.09.043

Gusti, A. P., Dewi Afivah, A. R. C., Rahmah, D. A., Denasfi, M. N., Cahyaning Putri, N. A., Hanifah, R., Restiani, T., Trianawati, M. L., Zulqisthi, D., Assariy, M. F., & Sabillah, C. H. (2025). Implementation of fuzzy logic in management decision making: Supply of raw materials for pie production in the food industry. Journal of Applied Science, Technology & Humanities, 2(4), 491–508. https://doi.org/10.62535/xnxxdt92

Harliana P, Rahim R. 2017. Comparative analysis of membership function on mamdani fuzzy inference system for decision making. Journal of Physics. 9(3): 1-7. https://doi.org/10.1088/1742-6596/930/1/012029.

Khairina, Z., Djali, M., & Andoyo, R. (2025). Optimasi Proses Produksi Biskuit Tinggi Protein Berbasis Soy Protein Concentrate (SPC). Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 12(1), 37-46. https://doi.org/10.29244/jmpi.2025.12.1.37.

Khairo, A. A., & Sitepu, S. (2024). Perbandingan Metode Defuzzifikasi Dalam Sistem Inferensi Fuzzy Metode Mamdani Untuk Penentuan Kerentanan Rawan Banjir (Studi Kasus: Kota Medan). FARABI: Jurnal Matematika Dan Pendidikan Matematika , 7(2), 175–184. https://doi.org/10.47662/farabi.v7i2.789

Lasaji, H., Assa, J. R., & Taroreh, M. I. (2023). Kandungan protein, kekerasan dan daya terima cookies tepung komposit sagu baruk (Arenga microcarpa) dan kacang hijau (Vigna radiata). Jurnal Teknologi Pertanian (Agricultural Technology Journal, 14(1), 57-71. https://doi.org/10.35791/jteta.v14i1.51040.

Lima, J. F., Patiño-León, A., Orellana, M., & Zambrano-Martinez, J. L. (2025). Evaluating the Impact of Membership Functions and Defuzzification Methods in a Fuzzy System: Case of Air Quality Levels. Applied Sciences, 15(4), 1934. https://doi.org/10.3390/app15041934

Liu, L., et al. (2022). Relationship of Starch Pasting Properties and Dough Characteristics with Biscuit Quality. Frontiers in Plant Science, 13, 829229. https://doi.org/10.3389/fpls.2022.829229

Pavani, M., Singha, P., Rajamanickam, D. T., & Singh, S. K. (2023). Application of fuzzy logic techniques for sensory evaluation of plant-based extrudates fortified with bioactive compounds. Exploration of Foods and Foodomics, 1(5), 272-287. https://doi.org/10.37349/eff.2023.00021.

Mada, G. S., Dethan, N. K. F., & Maharani, A. E. S. H. (2022). The defuzzification methods comparison of mamdani fuzzy inference system in predicting tofu production. Jurnal Varian, 5(2), 137-148.

Mashau, M. E. (2024). Development of high-protein biscuits by the enrichment of legume flour: Effects on textural and sensory properties. Journal of Food Processing and Preservation, 48(2), e16322. https://doi.org/10.1177/10820132241283322

Saatchi, R. (2024). Fuzzy Logic Concepts, Developments and Implementation. Information, 15(10), 656. https://doi.org/10.3390/info15100656

Wahono, W. T., Winarno, T., & Fathoni. (2016). Implementasi fuzzy logic untuk pengontrolan suhu pada proses reflow oven soldering. Jurnal Elkolind, 3(1). https://doi.org/10.33795/ELKOLIND.V3I1.59.

Zhang, J., Liu, Y., Wang, P., Zhao, Y., Zhu, Y., & Xiao, X. (2025). The Effect of Protein–Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods, 14(5), 778. https://doi.org/10.3390/foods14050778

Downloads

Published

2026-01-24

How to Cite

Analysis of the Effect of Protein Content and Preheating Temperature on the Hardness of SPC Biscuits Using the Fuzzy Logic Method. (2026). Journal of Applied Science, Technology & Humanities, 3(1), 780-792. https://doi.org/10.62535/6h6fq558