Fuzzy Logic System Application for Banana Shelf Life Prediction with Sensor-Based Microclimate
DOI:
https://doi.org/10.62535/8dap4r21Keywords:
Fuzzy logic, Mamdani method, Microclimate sensor, Shelf life predictionAbstract
Bananas are climacteric fruits with high postharvest loss rates due to rapid ripening and spoilage under uncontrolled microclimate conditions. This study aims to develop a fuzzy logic-based system for predicting banana shelf life using real-time sensor data and a web dashboard interface. The research employed a quantitative descriptive method using the Mamdani fuzzy inference system in MATLAB, with input variables including temperature (°C), relative humidity (%), and ethylene concentration (µL/L). The output variable was shelf life, categorized as Fresh, Starting to Spoil, or Spoiled. Simulation results showed that optimal conditions (temperature 18°C, humidity 85%, ethylene 1 µL/L) yielded a defuzzification value of 0.853, indicating high freshness. Conversely, suboptimal conditions (temperature 20°C, humidity 70%, ethylene 0.1 µL/L) produced a value of 0.493, reflecting moderate freshness. The fuzzy logic system effectively modeled nonlinear relationships and uncertainty in sensor data, enabling adaptive shelf life prediction. These findings confirm that integrating fuzzy logic with microclimate sensors and dashboard visualization enhances decision-making in fruit storage management
References
Adel, M. A., Nazari, M. H., & Shinwari, A. (2023). Evaluation of Ethylene Usage and Effects of Temperature, Humidity, and Lights on the Ripening of Banana (Musa spp). Nangarhar University International Journal of Biosciences, 2(03), 87–94. https://doi.org/10.70436/nuijb.v2i03.74
Alaydrus, A. Z. A., Wirda, Z., Marlina, L., Ndapamuri, M. H., Rizkaprilisa, W., Carsidi, D., Mulyani, R., Mahmudah, N. A., Anita, & Adi, P., et al. (2023). Fisiologi dan teknologi pasca panen (Megavitry, R., Ed.). Padang: PT Global Eksekutif Teknologi.
Baglat, P., Nayyar, A., Sharma, P., & Shrimali, B. (2023). Non-destructive banana ripeness detection using shallow and deep learning: A systematic review. Sensors, 23(2), 738. https://doi.org/10.3390/s23020738
Elsayed, M. I. (2025). Banana Postharvest Quality: Current Technologies and Future Perspectives. Journal of King Abdulaziz University: Meteorology, Environment and Arid Land Agriculture, 1(1), 88-108. https://doi.org/10.64064/1319-1039.1004
Hakim, R., Siregar, A., & Putri, L. (2020). Application of fuzzy logic in determining fruit quality based on postharvest indicators. Indonesian Journal of Food Science and Technology, 8(2), 55–63.
Hanif, F. N., Kusuma, P. D., & Nugrahaeni, R. A. (2023). Fuzzy mamdani for the primary balloon shooter game. FAST Journal of Computer Engineering: Progress, Application and Technology, 2(1), 1–11. https://doi.org/10.25124/cepat.v1i03.5268
Hw, E. A., Tulloh, R., & Hadiyoso, S. (2021). Sistem pemantauan dan pendeteksi kebakaran berbasis logika fuzzy dan real-time database. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(3), 577–591. http://dx.doi.org/10.26760/elkomika.v9i3.577
Jafari, A., Ebrahimi, R., & Ghasemi, M. (2021). Intelligent prediction of fruit freshness using fuzzy logic integrated with environmental sensors. Computers and Electronics in Agriculture, 189, 106421. https://doi.org/10.1016/j.compag.2021.106421
Lukmi, A. N., Maharamika, N. Z., Mandaiya, A. M., Mulyawan, F. A., Kamila S.Z., Irawan, S. (2024). Akurasi daya simpan benih dengan pendekatan hibrida logika fuzzy segeno dan regresi correlation untuk implementasi FIFO. Journal of Software Engineering, Computer Science and Information Technology, 5(2)
Nurhayati, S., & Immanudin, I. (2019). Penerapan logika fuzzy Mamdani untuk prediksi pengadaan peralatan rumah tangga rumah sakit. Komputika, 8(2), 81–87. https://doi.org/10.34010/komputika.v8i2.2254
Putri, S. K., Mukkun, L., & Suwasono, S. (2024). Pengantar teknologi pascapanen (Ariyanto, Ed.). Padang: CV HEI Publishing Indonesia.
Rahman, A. N. F., Muhammad, V. C., & Bastian, F. (2021). Effect of storage temperature on the quality of Kepok banana (Musa paradisiaca formatypica). Canrea Journal: Food Technology, Nutrition, and Culinary Journal, 4(1), 17–47. https://doi.org/10.20956/canrea.v4i1.1338
Šaletić, D. Z. (2023). Fuzzy aggregators – an overview. Interdisciplinary Description of Complex Systems, 21(4), 356–364. https://doi.org/10.7906/indecs.21.4.5
Sholihati, S., Abdullah, R., & Suroso, S. (2015). Kajian penundaan kematangan pisang raja (Musa paradisiaca Var. Sapientum L.) melalui penggunaan media penyerap etilen kalium permanganat. Rona Teknik Pertanian, 8(2), 76-89.
Suryadi, A., Putri, M. V., & Febrianti, E. L. (2022). Pengolahan citra digital dan logika fuzzy dalam identifikasi tingkat kematangan buah. Journal of Scientific and Social Research, 4307(June), 187–191.
Syahroni, A. W., & Rachmatullah, S. (2018). Sistem pendukung keputusan pemilihan laptop pada toko online dengan metode fuzzy tahani. Jurnal & Penelitian Teknik Informatika, 3(1), 145-146.
Thompson, J. F., Kitinoja, L., & Cantwell, M. (2018). Postharvest handling systems for horticultural crops. Scientia Horticulturae, 240, 90–102. https://doi.org/10.1016/j.scienta.2018.06.013
Yahia, E. M., Carrillo-López, A., & González-Aguilar, G. (2019). The role of ethylene in fruit ripening and quality. Frontiers in Plant Science, 10, 1374. https://doi.org/10.3389/fpls.2019.01374
Zam, W., Ilyas, & Syatrawati. (2019). Penerapan teknologi pascapanen untuk meningkatkan nilai jual cabai di Tana Toraja. Jurnal Dedikasi Masyarakat, 2(2), 92–100.
Zhao, Y., Li, X., & Chen, S. (2020). Temperature and humidity effects on fruit respiration and enzymatic activity: A postharvest perspective. Postharvest Biology and Technology, 169, 111285. https://doi.org/10.1016/j.postharvbio.2020.111285
Zore, K. R., Desale, S. B., Pujari, & Pawar, P. P. (2021). Ripening behaviour of banana with different sources of ethylene. International Journal of Current Microbiology and Applied Sciences, 10(2), 215–226.




