Enchasing Production Planning and Inventory Management : A Quantitative Approachto Forecasting for Bottled Mineral Water Products at PT Arima
DOI:
https://doi.org/10.62535/2ey5ss36Keywords:
Demand Forecasting , Error Level Accuracy , Optimal ProductionAbstract
PT Arima is a company engaged in the production of bottled mineral water. The demand for bottled mineral water is experiencing fluctuations, with demand increasing at the end, so companies must carry out optimal production planning to avoid stock buildup. Production planning at PT Arima is carried out by identifying demand levels using quantitative forecasting methods, namely moving average (n = 3) and exponential smoothing (α = 0.05) to maintain optimal production levels and stock in the warehouse does not accumulate. The results of processing the level of forecasting accuracy using 12 months of demand data obtained using the moving average method showed that the production level = 39,733 boxes in January 2024. MAD = 3733.22; MSE = 21566024.78 and MAPE = 0.10. Based on the exponential smoothing method, the production level = 38,081 boxes in January 2024. MAD = 5773.50; MSE = 43466303 and MAPE = 0.15. Based on the results of comparing the MAPE values of the two forecasting methods, the lowest MAPE value was obtained, namely the average method (n=3) of 0.10 with the production level of bottled mineral water to maintain optimal supply conditions in January 2024 of 39,733 boxes.
References
Aziza, J. N. A. (2022). Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services. Jurnal Teknologi Dan Manajemen Industri Terapan, 1(I), 35–41. https://doi.org/10.55826/tmit.v1ii.8
Bieniek, M. (2021). Consumer returns in consignment contracts with inventory control and additive uncertainty. Infor, 59(1), 169–189. https://doi.org/10.1080/03155986.2020.1796065
Cadenas, E., Jaramillo, O. A., & Rivera, W. (2010). Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method. Renewable Energy, 35(5), 925–930. https://doi.org/10.1016/j.renene.2009.10.037
Chou, J. S., & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 165, 709–726. https://doi.org/10.1016/j.energy.2018.09.144
De Nerol, I., Putra Syam Satria, R., Rasyid Parmana, R., Octavia, N., Mukti Darmawan, M. D., Mohamad Alvin Renaldi, M., Firdayanti, Nurfadillah, F., Kharismatunnisaa, F., Angeline, E., Kamil, D., & Saputra, Y. (2024). IoT-Based Barcode Scanning System for Production and Warehouse Management. Journal of Applied Science, Technology & Humanities, 1(1), 72–86. https://doi.org/10.62535/0zv1h756
de Oliveira, E. M., & Cyrino Oliveira, F. L. (2018). Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy, 144, 776–788. https://doi.org/10.1016/j.energy.2017.12.049
Duplakova, D., Teliskova, M., & Duplak, J. T. (2018). Determination of Optimal Production Process. 17, 609–622.
Jodlbauer, H., & Strasser, S. (2019). Capacity-driven production planning. Computers in Industry, 113, 103126. https://doi.org/10.1016/j.compind.2019.103126
Malladi, S. S., Erera, A. L., & White, C. C. (2020). A dynamic mobile production capacity and inventory control problem. IISE Transactions, 52(8), 926–943. https://doi.org/10.1080/24725854.2019.1693709
Muhammad Rizal, Dewi Rosa Indah, & Rahmi Meutia. (2021). Analisis Peramalan Produksi Menggunakan Trend Moment Pada Kilang Padi Do’a Ibu Diperlak Kecamatan Pereulak. Jurnal Samudra Ekonomika, 5(2), 161–168. https://doi.org/10.33059/jse.v5i2.4274
Nisa, A. R. (2024). Prediction on Target of Underprivileged Scholarships Using Fuzzy Logic Method Afifah. 1(2).
Parmana, R. R. (2024). Development of a Web-Based Automated Production Inventory System. 1(2).
Ramin, D., Spinelli, S., & Brusaferri, A. (2018). Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process. Applied Energy, 225, 622–636. https://doi.org/10.1016/j.apenergy.2018.03.084
Rizqi, F., & Zahran, A. (2024). Enhancing Demand Forecasting Accuracy for Electronic Components : A Case Study of PT Omron Indonesia. 1(2).
Santosa, S. H., & Hidayat, A. P. (2019). Model Penentuan Jumlah Pesanan Pada Aktifitas Supply Chain Telur Ayam Menggunakan Fuzzy Logic. Jurnal Ilmiah Teknik Industri, 18(2), 224–235. https://doi.org/10.23917/jiti.v18i2.8486
Santosa, S. H., Hidayat, A. P., & Siskandar, R. (2022). Raw material planning for tapioca flour production based on fuzzy logic approach: a case study. Jurnal Sistem Dan Manajemen Industri, 6(1), 67–76. https://e-jurnal.lppmunsera.org/index.php/JSMI/article/view/4594
Shuhaila, D., Maulidan, M. H., Satrio, M. A., Wijayanyo, A. D., Danang, M., Darmawan, M., Nurfadillah, F., & Octavia, N. (2024). Application of Fuzzy Logic to Predict Rice Production Quantity in Bogor Regency. 1(2).
Sinaga, H. D. E., & Irawati, N. (2018). Perbandingan Double Moving Average dengan Double Exponential Smoothing pada Peramalan Bahan Medis Habis Pakai. Jurnal Teknologi Dan Sistem Informasi, 4(2), 197–204.
Stevenson, M., Hendry, L. C., & Kingsman, B. G. (2005). A review of production planning and control: The applicability of key concepts to the make-to-order industry. International Journal of Production Research, 43(5), 869–898. https://doi.org/10.1080/0020754042000298520