Optimization of Cassava Production Management using Fuzzy Logic to Enhance Efficiency and Production Yield

Authors

  • Iklima Istiqomah IPB University Author
  • Hafiz Agi Alfasih IPB University Author
  • Herti Herti IPB University Author
  • Revanda Arifia IPB University Author
  • Fauzan Naufal Gibran IPB University Translator
  • Angga Eben Ezer IPB University Translator
  • Sesar Husen Santosa IPB University Author
  • Muhammad Danang Mukti Darmawan IPB University Author
  • Nanda Octavia IPB University Author

DOI:

https://doi.org/10.62535/3pxptb43

Keywords:

Cassava Production, Optimization , Mamdani Fuzzy Logic

Abstract

This research aims to optimize cassava production using fuzzy logic to enhance efficiency and productivity. Cassava is an important agricultural crop in Indonesia with great potential due to its ability to thrive in various types of soil and climates. Despite being considered a secondary food, cassava has numerous health benefits and serves as a good source of energy. However, crop failures and low yields hinder cassava production. Farmers can achieve optimal yields by maximizing output with minimal input costs. In addition to meeting market demand, pricing strategies are also crucial in determining the best products. Therefore, manufacturing companies need to plan the quantity of products to meet the expected demand. Factors such as product supply and demand need to be considered. It is challenging to monitor production elements when manual calculations are used. Hence, a method to accurately predict product availability is needed. The method used is fuzzy logic computation. We employ the Mamdani fuzzy logic method in this study. The outcome of this research is the ability to enhance cassava production yields based on Mamdani fuzzy logic calculations. The computations conducted enable farmers to determine production levels based on consumer demand.

Author Biographies

  • Iklima Istiqomah, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Hafiz Agi Alfasih, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Herti Herti, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Revanda Arifia, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Fauzan Naufal Gibran, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Angga Eben Ezer, IPB University

    Computer Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Sesar Husen Santosa, IPB University

    Industrial Management Study Program, Faculty of Vocational School, IPB University

  • Muhammad Danang Mukti Darmawan, IPB University

    Engineering Technology Study Program, Faculty of Vocational School, IPB University

  • Nanda Octavia, IPB University

    Engineering Technology Study Program, Faculty of Vocational School, IPB University

References

Eka N, A. R. S. K. C. P. N. (2022). Klasifikasi Penyakit Pada Tanaman Singkong Menggunakan Arsitektur VGGNET Berbasis Deep Learning Classification Of Diseases In Cassava Plant Using Deep Learning Based VGGNET Architecture.

Kurniadi, D., Nuraeni, F., & Jaelani, D. (n.d.). Implementasi Logika Fuzzy Mamdani Pada Sistem Prediksi Calon Penerima Program Keluarga Harapan. https://jurnal.itg.ac.id/.

Maghfiroh, Khoirin, & Nuswardhani, R. R. S. K. (2019). Diversifikasi pengolahan singkong untuk peningkatan kesejahteraan masyarakat. Teknologi Pangan: Media Informasi Dan Komunikasi Ilmiah Teknologi Pertanian, 10(2), 101–108. https://doi.org/10.35891/tp.v10i2.1647.

Mugirahayu, A. S., Linawati, L., & Setiawan, A. (2021). Penentuan Status Kewaspadaan COVID-19 Pada Suatu Wilayah Menggunakan Metode Fuzzy Inference System (FIS) Mamdani. Jurnal Sains Dan Edukasi Sains, 4(1), 28–39. https://doi.org/10.24246/juses.v4i1p28-39.

Nasution, V. M., & Prakarsa, G. (2020). Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani. Jurnal Media Informatika Budidarma, 4(1), 129. https://doi.org/10.30865/mib.v4i1.1719.

Purnomo, D., & Kusuma, M. P. (2022). Analisis faktor-faktor yang mempengaruhi produksi singkong di Kota Salatiga. Journal of Economics Research and Policy Studies, 2(1). https://doi.org/10.53088/jerps.v2i1.11.

Risky Siregar Program Ilmu Kesehatan Masyarakat, I., Gizi, P., & Kesehatan Masyarakat, F. (2023). Kue Tradisional Ubi Nanas Sebagai Pengganti Penurun Kadar Gula Darah Pada Orang Dewasa. JK: Jurnal Kesehatan, 1(1), 150–160.

Setia STM Tunas Bangsa Bandar Lampung bsetia, B. I. (2019). Penerapan Logika Fuzzy pada Sistem Cerdas. In Jurnal Sistem Cerdas.

Sosial, J., Dan, E., & Pertanian, K. (n.d.). Agrisocionomics Analisis Sikap Konsumen Terhadap Produk Olahan Singkong Consumer Attitude Analysis of Cassava Processed of Product Attributes. http://ejournal2.undip.ac.id/index.php/agrisocionomics.

Abrori, M., & Hinung Primahayu, A. (2016). Aplikasi Logika Fuzzy Metode Mamdani dalam Pengambilan Keputusan Penentuan Jumlah Produksi. Kaunia: Integration and Interconnection Islam and Science Journal, 11(2), 91 –. https://doi.org/10.14421/kaunia.580.

Khoiruddin, Muhammad .2011 . Usulan Jumlah Pemesanan Juice Apple Menggunakan Metode Fuzzy Tsukamoto Laporan Kerja Praktek UIN Sunan Kalijaga.

Djunaidi, M., Eko S., & Fajar W.A. 2005. Penentuan Jumlah Produksi dengan Aplikasi Metode Fuzzy-Mamdani. Jurnal Ilmiah Teknik Industri. Vol. 4, No. 2, , 95-104.

Endah, H.N. 2011 . Perencanaan Jumlah Produk Menggunakan Metode Fuzzy Mam dani Berdasarkan Prediksi Permintaan. Jurnal Ilmiah Matematika FMIPA-ITS.

Kusumadewi, Sri. 2002. Analisis & Desain Sistem Fuzzy Menggunakan Toolbox Matlab. Yogyakarta: Graha Ilmu.

Kusumadewi, Sri.,& P, Hari. 2004. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.

Andani, S. R. (2013). Fuzzy Mamdani Dalam Menentukantingkatkeberhasilan Dosen Mengajar. Seminar Nasional Informatika 2013(semnasIF 2013)ISSN: 1979- 2328 UPN ”Veteran” Yogyakarta.

Sitepu, E. (2018). Aplikasi Logika Fuzzy Menggunakan Metode Mamdani dalam Menentukan Jumlah Produksi Optimum Keripik Singkong (Studi Kasus: UD. Kreaasi Lutvi), Skripsi.

Gelley, Ned dan Roger Jang. 2000. Fuzzy Logic Toolbox. USA: Mathwork, Inc.

Munoz, M., Miranda, E., Sanchez. PJ. 2017. A Fuzzy System for Estimating Premium Cost of Option Exchange Using Mamdani Inference: Derivatives Market of Mexico.International Journal of Computational Intelligence System. 10:153-164.

Setiadji. 2009. Himpunan & Logika Samar serta Aplikasinya. Yogyakarta: Graha Ilmu.

Bojadziev G, Bojadziev M., 2007, Fuzzy logic for Business, Finance, and Management second edition, Word Scientific, Singapore.

Yulmaini. (2011). Penggunaan Logika Fuzzy dalam pemilihan peminatan Mahasiswa untuk Tugas Akhir (Studi Kasus : Jurusan Teknik Informatika IBI Darmajaya).Yogyakarta: Universitas Gadjah Mada.

Naba A., 2009, Belajar cepat Fuzzy Logic menggunakan mattlab, Andi Offsett, Yogyakarta.

Damayanti, Maharani Lutfiah. Teori Produksi. Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo.

Abubakar, Yusya., Anhar, Ashabul., Hamid, Ahmad Humam., dkk. (2021). Peningkatan Produksi Bahan Pangan Singkong Dengan Memanfaatkan Lahan Gambut Di Gampong Kuala Baro, Kecamatan Kuala Pesisir Kabupaten Nagan Raya. Vol.2, No.3 November 2021, Hal.829-834.

Susetyo, Joko., Asih, Endang Widuri., Raharjo, Heharuman. (2020). Optimalisasi Jumlah Produksi Menggunakan Fuzzy Inference System Metode Min-Max. Jurnal Rekayasa Industri (JRI), Vol. 2 No. 1 April 2020.

Deras, Stefanus., Sinulingga, Helviani. (2021). Efisiensi Penggunaan Faktor-Faktor Produksi Pada Usahatani Kentang Di Desa Kaban Kabupaten Karo. Jurnal Agriust, Volume 2 No. 1, Desember 2021.

Mahardika, Fajar., Bambang Sumantri, R. Bagus. (2022). Penerapan Metode Fuzzy Logic pada Sistem Pengaturan Kecepatan Mesin Produksi. Blend Sains Jurnal Teknik - Vol. 1 No. 3 (2023) Edisi Januari.

Djunaidi, Much., Setiawan, Eko., Andista, Fajar Whedi. (2005). Penentuan Jumlah Produksi Dengan Aplikasi Metode Fuzzy – Mamdani. Jurnal Ilmiah Teknik Industri, Vol. 4, No. 2, Des 2005, hal. 95 – 104.

Downloads

Published

2024-09-21

How to Cite

Optimization of Cassava Production Management using Fuzzy Logic to Enhance Efficiency and Production Yield. (2024). Journal of Applied Science, Technology & Humanities, 1(4), 382-393. https://doi.org/10.62535/3pxptb43