Mamdani's Fuzzy Logic-Based Tapioca Optimal Production Amount Prediction System
DOI:
https://doi.org/10.62535/ws0haa49Keywords:
Demand, Cassava Availability, Fuzzy , Optimal Production, TapiocaAbstract
This research focuses on the imbalance between supply and demand in the tapioca industry, especially on the scale of Small and Medium Industries (SMI). Such challenges involve price fluctuations and lack of efficiency in determining the optimal production amount. Using fuzzy logic as an artificial intelligence method, this research aims to develop a system for predicting the optimal amount of tapioca production that can increase efficiency, reduce waste of raw materials and energy, and stabilize prices. The data used in this study was obtained through interviews with resource persons who are involved in the field of tapioca SMI. Furthermore, the data was processed using the Mamdani Fuzzy Inference System method. The results showed that in the case of production when demand is 400 kg and cassava availability is 2000 kg, the optimal production amount of tapioca is 630 kg. This value is also consistent when proven using the Matlab R2015a application. This shows that the model can be relied upon in determining the decision on the amount of tapioca production by considering demand factors and raw material availability.
References
Badan Pusat Statistik (BPS). (2020). Statistik Industri Pengolahan Singkong dan Tepung Tapioka 2020. Jakarta: BPS.
Badan Pusat Statistik (BPS). (2021). Statistik Industri Pengolahan Singkong dan Tepung Tapioka 2021. Jakarta: BPS.
Badan Pusat Statistik (BPS). (2021). Harga Konsumen Bahan Makanan Pokok Nasional per Provinsi. Jakarta: BPS.
Blanco-Mesa, F., Merigó, J. M., & Gil-Lafuente, A. M. (2017). Fuzzy Decision Making: A Bibliometric-Based review. Journal of Intelligent and Fuzzy Systems, 32, 2033–2050. https://doi.org/10.3233/JIFS-161640
Darwanto, Dinata, K. B., & Junaidi. (2020). Teori Himpunan (P. B. Nugroho (ed.); 1st ed.). Universitas Muhammadiyah Kotabumi.
Davvaz, B., Mukhlash, I., & Soleha, S. (2021). Himpunan Fuzzy dan Rough Sets. Limits: Journal of Mathematics and Its Applications, 18(1), 79. https://doi.org/10.12962/limits.v18i1.7705
FAO, IFAD, UNICEF, WFP, & WHO. (2018). The State of Food Security and Nutrition in the World. In Food and Agriculture Organization of the United Nations,. www.fao.org/publications%0Ahttp://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1152267/
Fattahillah, G., Merdeka, P., & Nurkertamanda, D. (2020). Identifikasi 9 Waste Beserta Usulan Rekomendasi Perbaikan pada Proses Produksi Side Link dengan Pendekatan Lean Manufacturing pada Divisi Infrastruktur Perhubungan PT PINDAD (Persero). Industrual Engineering Online Journal, 12(3). https://ejournal3.undip.ac.id/index.php/ieoj/article/view/40323
Ginanjar, R. A. (2018). Analisis Efisiensi Industri Pengolahan Tepung Tapioka (Studi pada Desa Rembangkepuh Kecamatan Ngadiluwih Kabupaten Kediri). Jurnal Ilmiah Mahasiswa FEB, 6(2). https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/4842
Haerani, E. (2014). Analisa Kendali Logika Fuzzy dengan Metode Defuzzifikasi COA (Center of Area), Bisektor, MOM (Mean of Maximum), LOM (Largest of Maximum), dan SOM (Smallest of Maximum). SITEKIN: Jurnal Sains, Teknologi Dan Industri, 10(2), 245–253. http://dx.doi.org/10.24014/sitekin.v10i2.543
Hartanto, S. (2017). Implementasi Fuzzy Rule Based System untuk Klasifikasi Buah Mangga. Techsi, 9(2), 103–122. https://doi.org/10.29103/techsi.v9i2.217
Herdiyandi, Rusman, Y., & Yusuf, M. N. (2016). Analisis Nilai Tambah Agroindustri Tpung Tapioka di Desa Negaratengah Kecamatan Cineam Kabupaten Tasikmalaya (Studi Kasus pada Seorang Pengusaha Agroindustri Tepung Tapioka di Desa Negaratengah Kecamatan Cineam Kabupaten Tasikmalaya). Jurnal Ilmiah Mahasiswa Agroinfo Galuh, 2(2), 81–86. https://doi.org/10.25157/jimag.v2i2.62
Hidayat, A. P., Santosa, S. H., & Siskandar, R. (2022). Penentuan Jumlah Kebutuhan Bahan Baku Berdasarkan Distribusi Barang Ideal di IKM Tepung Tapioka Kabupaten Bogor. Jurnal INTECH Teknik Industri Universitas Serang Raya, 8(1), 23–28. https://doi.org/10.30656/intech.v8i1.4400
Indra. (2016). Penerapan Logika Fuzzy untuk Menentukan Jumlah Produksi Beras Berdasarkan Data Persediaan dan Jumlah Permintaan (Studi Kasus UD Siregar Wonomulyo). JTRISTE, 3(2), 87–98. https://jurnal.kharisma.ac.id/jtriste/article/download/66/60/
Kartika, D., Sovia, R., & Sandawa, H. M. (2018). Penerapan Metode Fuzzy Mamdani untuk Memprediksi Angka Penjualan Token Berdasarkan Persediaan dan Jumlah Permintaan pada PT. PLN (Persero) Padang Berbasis Web. KomTekInfo, 5(1), 81–95. https://doi.org/https://doi.org/10.35134/komtekinfo.v5i1.8
Kharisma, L. P. I., Yahya, S. R., Sepriano, Handayanto, R. T., Herlawati, Gunawan, I. M. A. O., Handika, I. P. S., Hatta, H. R., & Syamsil, A. (2023). Metode SPK Favorit di Masa Depan (Teori dan Contoh) (A. Juansa & Efrita (eds.); 1st ed.).
Kusnadi, N. A. (2022). Pengaruh Fluktuasi kharga komoditas pangan terhadap inflasi di Provinsi Jawa Timur. Jurnal Ilmiah Mahasiswa FEB, 6(2), 1–19. https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/5128/4504
Li, Y. Z., Zhao, J. Y., Wu, S. M., Fan, X. W., Luo, X. L., & Chen, B. S. (2016). Characters Related to Higher Starch Accumulation in Cassava Storage Roots. Scientific Reports, 6(September 2015), 1–17. https://doi.org/10.1038/srep19823
Mamdani, E. H. (1976). Advances in The Linguistic Synthesis of Fuzzy Controllers. International Journal of Man-Machine Studies, 8(6), 669–678. https://doi.org/10.1016/S0020-7373(76)80028-4
Nopiani, S. W., Noor, T. I., & Sudrajat. (2019). Analisis Nilai Tambah Agroindustri Tepung Tapioka (Studi Kasus pada Agroindustri Tepung Tapioka “Madur” di Desa Bojongasih Kecamatan Bojongasih Kabupaten Tasikmalaya). Jurnal Ilmiah Mahasiswa Agroinfo Galuh, 6(2), 377–386. http://dx.doi.org/10.25157/jimag.v6i2.2496
Novaldi, A. A., Miranda, C., & Nurhayati, A. D. (2022). Teknik Budi Daya dan Karakteristik Ubi Kayu (Manihot esculenta Crantz) di Desa Leuwisadeng, Kecamatan Leuwisadeng, Kabupaten Bogor, Jawa Barat. Jurnal Pusat Inovasi Masyarakat (PIM), 4(1), 8–16. https://doi.org/10.29244/pim.v4i1.38142
Pangkatodi, E., Liliana, & Budhi, G. S. (2016). Implementasi Rule Base System dan Fuzzy Logic Artifical Intelligence pada Game Kartu Capsa. Jurnal Infra, 4(1), 1–7.
Santosa, S. H., & Hidayat, A. P. (2019). Model Penentuan Jumlah Pesanan Pada Aktifitas Supply Chain Telur Ayam Menggunakan Fuzzy Logic. Jurnal Ilmiah Teknik Industri, 18(2), 224–235. https://doi.org/10.23917/jiti.v18i2.8486
Santosa, S. H., Sulaeman, S., Hidayat, A. P., & Ardani, I. (2020). Fuzzy Logic Approach to Determine the Optimum Nugget Production Capacity. Jurnal Ilmiah Teknik Industri, 19(1), 70–83. https://doi.org/10.23917/jiti.v19i1.10295
Sholihah, E., & Jaelani. (2023). Penerapan MFCA dengan Lean Tools. JRIME : JURNAL RISET MANAJEMEN DAN EKONOMI, 1(2), 249–277. https://doi.org/10.54066/jrime-itb.v1i2.649
Shuhaila, D., Maulidan, M. H., Satrio, M. A., Wijayanyo, A. D., Darmawan, M. D. M., Nurfadillah, F., & Octavia, N. (2024). Application of Fuzzy Logic to Predict Rice Production Quantity in Bogor Regency. Journal of Applied Science, Technology & Humanities, 1(2). http://dx.doi.org/10.62535/cbrrmp50
Simanjuntak, P., Suharyanto, C., & Khairiyah, R. (2018). Fuzzy Sugeno untuk Menentukan Penilaian Kompetensi Karyawan PT. Schneider Batam. Information System Development (ISD), 3(2), 97–103. https://doi.org/https://doi.org/10.31227/osf.io%2F7dph8
Subekti, I., Khumaida, N., Ardie, S. W., & Syukur, D. M. (2018). Evaluasi Hasil dan Kandungan Pati Mutan Ubi Kayu Hasil Iradiasi Sinar Gamma Generasi M1V4. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 46(1), 64. https://doi.org/10.24831/jai.v46i1.17610
Surmaini, E., & Faqih, A. (2016). Extreme Climate Events and their Impacts on Food Crop in Indonesia. Jurnal Sumberdaya Lahan, 10(2), 115–128. https://epublikasi.pertanian.go.id/berkala/jsl/article/download/3357/3390/4303
Suryani, R. (2020). Outlook Ubi Kayu: Komoditas Pertanian Subsektor Tanaman Pangan. In Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian.
Sutikno. (2018). Perbandingan Metode Defuzzifikasi Sistem Kendali Logika Fuzzy Model Mamdani pada Motor Dc. Jurnal Masyarakat Informatika, 2(3), 27–38.