Using Fuzzy Logic-Based Mamdani to Predict Catfish Larval Rearing

Authors

  • Rangga Ardiansyah IPB University Author
  • Daffa Zulqisthi IPB University Author
  • Muhammad Faiz Assarly IPB University Author
  • Sahrul Aidil Adhar IPB University Author
  • Najla Nadashifa Wicaksono IPB University Author
  • Fauziah Siti Khodijah IPB University Author
  • Sili Maysaroh IPB University Author
  • Sofie Saharsa Leilani Katim IPB University Author
  • Nisrina Ratu Hadayani Samosir IPB University Author
  • Razfa Muhamad Zaki Adz Dzikri IPB University Author
  • Muhammad Ikmal Muhaniq IPB University Author
  • Muhammad Ikmal Muhaniq IPB University Author
  • Naufal Auzan Ramadhan IPB University Author

DOI:

https://doi.org/10.62535/24tjgp28

Keywords:

Catfish Larval, Fuzzy Mamdani, MATLAB , Water Quality, Simulation

Abstract

Catfish (Clarias sp.) larvae are highly sensitive to environmental changes, particularly in water quality parameters such as temperature, pH, and dissolved oxygen (DO), which significantly affect their survival rate (SR). This study aims to design a real-time prediction system for catfish larval survival using Mamdani fuzzy logic to support more accurate and adaptive water quality management. The research was conducted from April to May 2025 at the Hatchery, IPB Vocational School. The methodology involves constructing a Mamdani fuzzy inference system in MATLAB based on secondary data (SNI 6484:3:2014 and previous studies) and field observations. Three main input parameters temperature, pH, and DO. Were categorized into fuzzy sets using triangular membership functions. A total of 84 fuzzy rules were developed to infer SR, which was also divided into three categories: low, moderate, and high. Simulation results using the Rule Viewer and Surface Viewer showed that DO had the strongest influence on SR followed by temperature, while pH had a relatively minor effect. Under low DO conditions (<3 mg/L), SR predictions were consistently low regardless of other variables. In conclusion, the Mamdani fuzzy logic system proves effective in predicting catfish larval SR and can be a valuable tool for optimizing aquaculture practices.

References

Adi, R. M. S., Michelli, L. M., Alkori, H., & Ramadhan, R. G. (2024). The Applications of Mamdani Fuzzy in Water Selection of Pangas Catfish Ponds. Journal of Informatics Information System Software Engineering and Applications (INISTA), 6(2), 108–115. https://doi.org/10.20895/inista.v6i2.1030

Akhter, F., Siddiquei, H. R., Alahi, E. E., Mukhopadhyay, S. C., Alahi, M. E. E. ;, & Mukhopadhyay, S. C. (2021). computers Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries. https://doi.org/10.3390/computers

Alim, S. A., Sumaila, M., & Ritkangnga, I. Y. (2021). Design of a Fuzzy Logic Controller for Optimal African Catfish Water Production. MEKATRONIKA, 3(2), 42–48. https://doi.org/10.15282/mekatronika.v3i2.7352

Analiah Fahlevy Yusuf, Zidan Febrian, Muhammad Fathurrahman, Rajwa Daffa Adyatama Yuristiawan, Steven Jona Duari Huta Balian, Dwi Yulinar Chairunisa, & Agung Prayudha Hidayat. (2025). Fuzzy Inference System to Improve Catfish Care in Bioflok Pools Based on Temperature and Water Quality. Journal of Applied Science, Technology & Humanities, 2(1), 1–12. https://doi.org/10.62535/c6c50w10

Arifuddin, A., Wahyudin, W., Prabawanto, S., Yasin, M., & Elizanti, D. (2022). The Effectiveness of Augmented Reality-Assisted Scientific Approach to Improve Mathematical Creative Thinking Ability of Elementary School Students. Al Ibtida: Jurnal Pendidikan Guru MI, 9(2), 444-455. http://dx.doi.org/10.24235/al.ibtida.snj.v9i2.11647

Bautista, M. G. A. C., Palconit, M. G. B., Rosales, M. A., Concepcion, R. S., Bandala, A. A., Dadios, E. P., & Duarte, B. (2022). Fuzzy Logic-Based Adaptive Aquaculture Water Monitoring System Based on Instantaneous Limnological Parameters. Journal of Advanced Computational Intelligence and Intelligent Informatics, 26(6), 937–943. https://doi.org/10.20965/JACIII.2022.P0937

Choiri, A. F. (2024). IoT-Based Water Quality Monitoring System for Fish Ponds Using Fuzzy Inference Method. In Jurnal Teknologi Informasi Dan Terapan (J-TIT (Vol. 11, Issue 2). https://doi.org/10/25047/jtit.v11i2.5794

Cholilulloh, M., & Syauqy, D. (2018). Implementasi Metode Fuzzy Pada Kualitas Air Kolam Bibit Lele Berdasarkan Suhu dan Kekeruhan (Vol. 2, Issue 5). http://j-ptiik.ub.ac.id

Derli Aidil, Ilham Zulfahmi, Muliar.2016.Pengaruh suhu terhadap derajat penetasan telur dan perkembangan larva ikan lele sangkuariang(Clariasgariepinusvar.sangkuriang).JESBIO Vol. V No. 1.

Farmadi, A., & Kartini, D. (2021). Iplementasi Fuzzy Pada Monitoring dan Kontrol Kualitas Air Tangki Pembibitan ikan Menggunakan LabView. In Jurnal Komputasi (Vol. 9, Issue 2).

Gustiano, R., & Sri Haryani, G. (2021). Economically Important Freshwater Fish Native to Indonesia: Diversity, Ecology, and History (Vol. 48, Issue 10).

H.D, N. K., & Mahardani, J. (2024). Perancangan Dan Integrasi Iot Pada Sistem Kendali Air Kolam Dengan Metode Fuzzy Berdasarkan Ph Dan Turbidity Berbasis Mikrokontroler. EPSILON: Journal of Electrical Engineering and Information Technology, 22(1), 17–32. https://doi.org/10.55893/epsilon.v22i1.114

Khoir Afdan, R., Khairuddin, F., Fazil Mawla Lubis, M., & Rahmadhani Hasibuan, F. (2023). Pengaruh Kualitas Air Terhadap Produksi Ikan Lele Dumbo (Clarias gariepinus). Pubmedia Jurnal Biologi, 1, 1–8. https://doi.org/10.47134/biology.v1i1.193

Kurniawan, R., Hasibuan, M. S., & Prayuda, I. (2022). Automatic Fish Sorter With Microcontroller Based Sugeno Fuzzy Logic. INFOKUM, August, Data Mining, Image Processing, and Artificial Intelligence, 10(3), 85–92. Retrieved from http://infor.seaninstitute.org/index.php/infokum/article/view/583

Laboni, T. A., Khatun, H., Khatun, M. S., Rahman, M. A., Islam, M. A., Ratry, Y. A., Uddin, M. M., Hossain, M. S., & Hossain, M. Y. (2024). Reproductive performance of Channa striata in wetland ecosystems: a fuzzy logic approach to water quality and eco-climatic factors for long-term sustainable management and aquaculture advancement. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-35701-9

Maghriza, R. Y. (2020). Publication Periode Development of a Water Quality Control System for Catfish Cultivation Using the Fuzzy Logic Method with IoT-Based Monitoring.

Mendoza, C. D. P., Caguimbal, R. G. R., Mandocdoc, J. B., & Sarmiento, J. S. (2023). Developing Fuzzy Rules for Small Scale Rearing of Black Soldier Fly Eggs. 2023 International Conference on Disruptive Technologies, ICDT 2023, 708–713. https://doi.org/10.1109/ICDT57929.2023.10151393

Muhammad Aqshol Dafa Ramadhan, Deyastra, M. R., Fadlurohman, F., Syahidah, R., Naufal Apriansyah, M. R., Ryanta Mulya, D., Octavia, N., Angeline, E., Mukti Dermawan, M. D., Wibisono, B., Naktavia, B., Ramadhan, M. S., Maharani, E., Rizky, Y., Keyvin Sitio, Y. I., Arista Dewi, F., Zulfia, G., Ryanda, P., Damayanti Nur, R., & Fiqri Nurfadillah. (2024). The Use off Fuzzy Mamdani to Predict Tilapia Production Based on Freshwater Quality. Journal of Applied Science, Technology & Humanities, 1(5), 521–533. https://doi.org/10.62535/3jfbnh51

Muhammad Fajarudin, Handika Saputra Harahap, Irmansyah, Muhamad Al Habsy, Fardiana Yunita, Inna Novianty, Nanda Octavia, & Ivan De Nerol. (2024). Implementation of Fuzzy Logic to Regulate Water Quality in Maintaining the Aquascape Ecosystem. Journal of Applied Science, Technology & Humanities, 1(4), 303–314. https://doi.org/10.62535/dvbdxn84

Pujiharsono, H., & Kurnianto, D. (2020). Sistem inferensi fuzzy Mamdani untuk menentukan tingkat kualitas air pada kolam bioflok dalam budidaya ikan lele. Jurnal Teknologi Dan Sistem Komputer, 8(2), 84–88.

Ramdani, F., Daryn Ramadhani Az Zahra, Herlambang Nurasyid Ramdhani, Mohamad Fikih Amar Dani, Fiqri Nurfadillah, Muhammad Danang Mukti Darmawan, & Nanda Octavia. (2025). Prediction of Water Quality in Ponds Based on Temperature, Water Clarity, pH, and Dissolved Oxygen Using Mamdani Fuzzy Logic. Journal of Applied Science, Technology & Humanities, 2(2), 149–161. https://doi.org/10.62535/n729q614

Rana, D., & Rani, S. (2015). Fuzzy logic based control system for fresh water aquaculture: A MATLAB based simulation approach. Serbian Journal of Electrical Engineering, 12(2), 171–182. https://doi.org/10.2298/sjee1502171r

Riadhi, L., Rivai, M., & Budiman, F. (2017). Sistem Pengaturan Oksigen Terlarut Menggunakan Metode Logika Fuzzy Berbasis Mikrokontroler Teensy Board. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.26014

Rizki, M., & Darnila, E. (n.d.). METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi PENERAPAN LOGIKA FUZZY TSUKAMOTO PADA RANCANG BANGUN SISTEM DETEKSI KEKERUHAN AIR BUDI DAYA IKAN LELE. https://doi.org/10.46880/jmika.Vol9No1.pp112-120

Rochyani, N. (2018). Analisis Karakteristik Lingkungan Air Dan Kolam Dalam Mendukung Budidaya Ikan. Jurnal Ilmu-Ilmu Perikanan Dan Budidaya Perairan, 13(1), 51–56. https://doi.org/10.31851/jipbp.v13i1.2856

Saputra, I., Kusuma Atmaja Putra, W., & Yulianto, T. (2018). Conversion Rate and Feed Efficiency of Silver Pompano Fish (Trachinotus blochii) With Different Frequency Giving. Journal of Aquaculture Science, 3(2), 72–84. https://doi.org/10.31093/joas.v3i2.56

Saskia, K. A., & Salamah, I. (2025). Pearl Catfish Pond Water Quality Monitoring System Using the ThingSpeak Server, 17(2).

Sholihah, W., Hendriana, A., Kusumanti, I., & Novianty, I. (2022). Design of IoT Based Water Monitoring System (Simonair) For Arwana Fish Cultivation. Eduvest - Journal of Universal Studies, 2(12), 2872–2884. https://doi.org/10.59188/eduvest.v2i12.708

Sugianti, E. P., & Hafiludin, H. (2022). Manajemen Kualitas Air Pada Pembenihan Ikan Lele Mutiara (Clarias gariepinus) di Balai Benih Ikan (BBI) Pamekasan. Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan, 3(2), 32–36. https://doi.org/10.21107/juvenil.v3i2.15813

Teng, S., & Alonzo, D. (2023). Critical Review of the Australian Professional Standards for Teachers: Where are the non-Cognitive Skills?. International Journal of Instruction, 16(1). 605-624. https://doi.org/10.29333/iji.2023.16134a

Yanti, N., Nur, T., & Randis, R. (2022). Implementation of Fuzzy Logic in Fish Dryer Design. ILKOM Jurnal Ilmiah, 14(1), 39–51. https://doi.org/10.33096/ilkom.v14i1.1092.39-51

Yudi Abdul Syawari, M., & Hartono. (2024). Sistem Inferensi Fuzzy Tsukamoto Untuk Menentukan Tingkat Kualitas Air Pada Kolam Budidaya Ikan Lele. Sienna, 5(1), 95–109. https://doi.org/10.47637/sienna.v5i1.1358

Yulianto, T., Solehah, I., Faisol, F., Amalia, R., & Tafrikan, M. (2023). Perbandingan Fuzzy Tsukamoto Dan Fuzzy Mamdani Dalam Memprediksi Intensitas Curah Hujan Di Kabupaten Sumenep. Jurnal Aplikasi Teknologi Informasi Dan Manajemen (Jatim), 4(1), 69-83.

Downloads

Published

2025-09-21

How to Cite

Using Fuzzy Logic-Based Mamdani to Predict Catfish Larval Rearing. (2025). Journal of Applied Science, Technology & Humanities, 2(4), 572-583. https://doi.org/10.62535/24tjgp28