SoltarinE: A Revolutionary Eco-Friendly Charging Station to Reduce Carbon Gases in PLN's Power Usage

Authors

  • Chika hayya Sabillah Vocational Studies IPB University Author
  • Dhimas Agung Dwiputra Author
  • Aura Kharina Author

DOI:

https://doi.org/10.62535/hw6p3242

Keywords:

charging station, solar energy, dual-axis solar tracker, carbon emission, eco-friendly technology

Abstract

The main goal of this study is to develop charging stations that use solar energy as an environmentally friendly alternative, in order to reduce carbon dioxide gas emissions produced from burning fossil fuels. The method used is qualitative with data collection through system observation and analysis of solar panel performance with dual-axis technology that can follow the movement of the sun. The results of the study show that the use of solar panels equipped with dual-axis actuators can increase the efficiency of sunlight absorption, so that the power produced is more optimal. From the analysis, it was found that these stations not only provide an efficient charging solution, but also contribute to a reduction in carbon footprint, with the potential for significant reductions in CO2 emissions. The conclusion of this study shows that the development of solar energy-based charging station technology is a strategic step in supporting the transition to a more sustainable energy source in Indonesia.

References

Abd Elsadek, E.M., Kotb, H., Abdel-Khalik, A.S., Aboelmagd, Y., & Abdelbaky Elbatran, A.H. (2024). Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building. Sustainability.

Ananda, A. S., Hayati, L. N., As'adi, I. 2022. Solar Panel-Based Eco-Friendly Battery Energy Charging Station. Resistor Journal. Vol. 5(2). 150-158. ISSN 2598-7542. DOI: https://doi.org/10.31598

BMKG | Meteorology, Climatology, and Geophysics Agency. (2018). BMKG | MKG Region III Denpasar Center. [online] Available at: http://balai3.denpasar.bmkg.go.id/daftar-istilah-musim [Accessed 2024 May 22]

BMKG | Meteorology, Climatology, and Geophysics Agency. (2018). Article: Average Characteristics of Maximum Temperature and Minimum Temperature of Nabire Meteorological Station in 2006-2015 | BMKG. [online] Available at: http://www.bmkg.go.id/artikel/?id=xa9q99255011rged5919 [Accessed 2024 May 22].

Emidiana, E., Perawati, P., & Rudin, H. 2022. Planning for Solar Power Plant in Employee Housing Block B55 PT. Cipta Lestari Sawit Bumirejo Estate. Electric, 14(2), 35-40. http://dx.doi.org/10.26623/elektrika.v14i2.4733

Goeritno, A., Maulana, M. A., Shulhan, F., & Fiqwananda, H. 2023. Installation of Solar Panels for the Charging Power Station System in the Mount Kuta Ecotourism Area, Bogor Regency. Mitra Teras: Applied Journal of Community Service, Vol. 2(2), 82-97. p-ISSN: 2963-2102. https://doi.org/10.58797/teras.0202

Harahap, P. (2020). The effect of the surface temperature of solar panels on the power generated from different types of solar cells. RELE (Electrical and Energy Engineering): Journal of Electrical Engineering, Vol. 2(2), 73-80. ISSN 2622 – 7002. DOI: https://doi.org/10.30596/rele.v1i1.4420

Haryanto, T., Henry, C., Pranoto, H. 2021. Designing Renewable Energy Solar Panels for Essential Load with Switch System. Journal of Mechanical Engineering Mercu Buana, [Accessed 2024 May 15].. 10(1), 41-50. ISSN 2549-2888

Hu, A., Levis, S., Meehl, G. A., Han, W., Washington, W. M. Oleson, K. W., Ruijven, B. J., He, M., Strand, W. G. 2015. Impact of solar panels on global climate. Nature Climate Change. 6, 290–294. Team: https://doi.org/10.1038/nclimate2843

Hidayat, A., Martini, R., Ristianingrum, A., Priatna, W. B., Indrawan, P., Manalu, D. S. T., Wiraguna, E., Dewi, H., Dewi, S. P., Pratama, A. J., Ratnawati, B., Putri, R. G. H., Manaf, I., Balqis, N., Hanafi, M. H., Ginting, K. J., Rizkialita, A., Darma, R. Y. B., Darmawan, M. D. M., Siskandar, R. 2024. Predictions and Policies on Carbon Footprint Release Data at the College of Vocational Studies, IPB University (SV IPB) Based on the Contribution of Campus Operational Activities. Environment and Ecology Research. 12(1), 40 – 53. Team: https://doi.org/10.13189/eer.2024.120105

H. Zhao, S. Guo and H. Zhao. 2018. Comprehensive performance assessment on various battery energy storage systems, Energies 2018, 11, 2841. Doi: https://doi.org/10.3390/en11102841.

Irawan, B., Hadi, S., Rohman, F., Darsin, M. 2018. Selection of battery capacity to store electrical energy from solar energy. RATOR Journal. [Accessed 2024 May 15]. Vol. 11(2). 15-18.

IQAir| Air quality index. 2023. IQAir | Air quality index (AQI) and PM2.5 air pollution in the world. [online] Available at: https://www.iqair.com/id/world-air-quality [Accessed 2024 May 22].

Jianmin Ma, et al. 2021. The 2021 battery technology roadmap. Journal of Physics D: Applied Physics. Vol. 54(18). Team: https://doi.org/10.1088/1361-6463/abd353

John, L. G., Thing, G. T., Ragupathy, J., Chua, H. S., & Han, F. P. 2023. Design, Development and Experiment Analysis of Solar Panel Cleaning System. In International Conference on Green Energy, Computing and Intelligent Technology Singapore: Springer Nature Singapore. 35-50 https://doi.org/10.1007/978-981-99-9833-3_4.

Laksono, J. D. F., Prasetiyo, E. E., & Marausna, G. 2022. Analysis of the Performance Effectiveness of Solar Panels as a Source of Electrical Energy with Photovolaic 200 WP. STTKD Engineering: Journal of Engineering, Electronics, Engine, Vol. 8(1), 17-28. ISSN 2460-1608. https://doi.org/10.56521/teknika.v8i1.443

Mandal, S., Singh, D. 2017. Real Time Data Acquisation of Solar Panel Using Arduino and Further Recording Voltage of the Solar Panel. International Journal of Instrumentation and Control Systems. 7(3),15-25. Team: https://doi.org/10.5121/ijics.2017.7303

Matondang, S. N., Uluwiyah, D. U., Hikmatyara, S., Artanty, S. D. S., Adelia, N., Artanti, S. C., & Subekti, M. F. A. 2023. Powerpixie (Power Bank Solar Panel) Innovation in Designing a Solar Panel-Based Portable Powerbank Application. Scientica: Scientific Journal of Science and Technology, 1(1), 202-217. https://doi.org/10.572349/scientica.v1i1.85

Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. 2023. Air quality prediction using Xgboost with Synthetic Minority Oversampling Technique (Smote) based on the Air Pollution Standard Index (ISPU). JTIK (Kaputama Informatics Engineering Journal), [accessed 2024 May 31], 7(1), 214-219.

Nasution, M. 2021. Specific characteristics of batteries as a store of electrical energy. Journal of Electrical Technology. [accessed 2024 May 12] Vol. 6(1). 35-40. ISSN : 2598 – 1099.

S. Aroonsrimorakot, M. Laiphrakpam, W. Paisantanakij. 2020. Solar panel energy technology for sustainable agriculture farming: A review. Mahidol University Repository Division. Vol.16(3). 553-562. ISSN:26300192. https://repository.li.mahidol.ac.th/handle/123456789/59826

Setiawan, A. T., & Wijayanto, H. L. 2023. 100 Kg Capacity Mini Forklift Design with Linear Actuator Drive System. Brilliant: Journal of Research and Conceptual, 8(1), 230-240.

Subiyanto. 2014. Model of Integrated Solar Power Generation System with Grid-Connected Battery. UNNES Journal of Science and Technology. Vol.12(2). 147-158. DOI: https://doi.org/10.15294/sainteknol.v12i2.5417

Uzair Yousuf, M., Usaid Saleem, M., & Umair, M. (2024). Evaluating the 7E Impact of Solar Photovoltaic Power Plants at Airports: A case study. Science and Technology for Energy Transition.

Wijaya, N. M. A., Kumara, I. N. S., Partha, C. G. I., Divayana, Y. 2021. The development of batteries and chargers to support the penitentiary of electric bicycles in Indonesia. Spectrum journal. vol.8(1). 15-26. DOI: 10.24843/SPEKTRUM.2021.v08.i01.p3

Zahra, F. L. Indonesia Environment & Energy Center (IEC). 2024. Article: Let's Get to Know These are the Sources of Air Pollution Causes in Indonesia. Avaliable at: https://environment-indonesia.com/yuk-kenali-ini-sumber-sumber-penyebab-polusi-udara-di-indonesia/ [Accessed 2024 May 22].

Zaky, R. F. M., & Sari, D. A. 2024. Efforts to Reduce Carbon Dioxide (CO2) Emissions in Indonesia through Power-to-Gas Integration Analysis with Coal-fired Power Plants. Sprocket Journal Of Mechanical Engineering, 5(2), 66-75. https://doi.org/10.36655/sprocket.v5i2.1333

Zanofa, A. P., Arrahman, R., Bakri, M., & Budiman, A. 2020. Automatic Gate Based on Arduino UNO R3 Microcontroller. Journal of Computer Engineering and Systems, 1(1), 22-27. https://doi.org/10.33365/jtikom.v1i1.76

Zhou, W., Zheng, Y., Pan, Z., Lu, Q. 2021. Review on the Battery Model and SOC Estimation Method. Nanjing Forestry University. 9(9), 1685; https://doi.org/10.3390/pr9091685

Downloads

Published

2024-11-30

How to Cite

SoltarinE: A Revolutionary Eco-Friendly Charging Station to Reduce Carbon Gases in PLN’s Power Usage. (2024). Journal of Applied Science, Technology & Humanities, 1(5), 559-569. https://doi.org/10.62535/hw6p3242